المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
التربة المناسبة لزراعة الفجل
2024-11-24
مقبرة (انحور خعوي) مقدم رب الأرضين في مكان الصدق في جبانة في دير المدينة
2024-11-24
اقسام الأسارى
2024-11-24
الوزير نفررنبت في عهد رعمسيس الرابع
2024-11-24
أصناف الكفار وكيفية قتالهم
2024-11-24
الكاهن الأعظم «لآمون» (رعمسيس نخت) وأسرته
2024-11-24

الاستعانة بـالصبر والصلاة
7-10-2014
البوليمرات الصناعية Synthetic polymers
2024-09-09
الصفة المشبهة
20-10-2014
ازفاء المجموعة Group Translocation
9-7-2018
الحسين بن عبد الوهاب.
12-6-2017
In Silico Media
18-9-2018

The Lorentz force  
  
2278   04:14 مساءاً   date: 2-1-2017
Author : Richard Fitzpatrick
Book or Source : Classical Electromagnetism
Page and Part : p 69


Read More
Date: 22-5-2016 2345
Date: 29-9-2020 1581
Date: 9-1-2017 2591

The Lorentz force

The flow of an electric current down a conducting wire is ultimately due to the motion of electrically charged particles (in most cases, electrons) through the conducting medium. It seems reasonable, therefore, that the force exerted on the wire when it is placed in a magnetic field is really the resultant of the forces exerted on these moving charges. Let us suppose that this is the case. Let A be the (uniform) cross-sectional area of the wire, and let n be the number density of mobile charges in the conductor. Suppose that the mobile charges each have charge q and velocity v. We must assume that the conductor also contains stationary charges, of charge -q and number density n, say, so that the net charge density in the wire is zero. In most conductors the mobile charges are electrons and the stationary charges are atomic nuclei. The magnitude of the electric current flowing through the wire is simply the number of coulombs per second which flow past a given point. In one second a mobile charge moves a distance v, so all of the charges contained in a cylinder of cross-sectional area A and length v flow past a given point. Thus, the magnitude of the current is q nA v. The direction of the current is the same as the direction of motion of the charges, so the vector current is Iʹ = q nAv. The force per unit length acting on the wire is

 (1.1)

However, a unit length of the wire contains nA moving charges. So, assuming that each charge is subject to an equal force from the magnetic field (we have no reason to suppose otherwise), the force acting on an individual charge is

 (1.2)

We can combine this with above as

to give the force acting on a charge q moving with velocity v in an electric field E and a magnetic field B:

 (1.3)

This is called the ''Lorentz force law" after the Dutch physicist Hendrik Antoon Lorentz who first formulated it. The electric force on a charged particle is parallel to the local electric field. The magnetic force, however, is perpendicular to both the local magnetic field and the particle's direction of motion. No magnetic force is exerted on a stationary charged particle. The equation of motion of a free particle of charge q and mass m moving in electric and magnetic fields is

 (1.4)

according to the Lorentz force law. This equation of motion was verified in a famous experiment carried out by the Cambridge physicist J.J. Thompson in 1897. Thompson was investigating ''cathode rays", a then mysterious form of radiation emitted by a heated metal element held at a large negative voltage (i.e. a cathode) with respect to another metal element (i.e., an anode) in an evacuated tube. German physicists held that cathode rays were a form of electromagnetic radiation, whilst British and French physicists suspected that they were, in reality, a stream of charged particles. Thompson was able to demonstrate that the latter view was correct. In Thompson's experiment the cathode rays passed though a region of ''crossed" electric and magnetic fields (still in vacuum). The fields were perpendicular to the original trajectory of the rays and were also mutually perpendicular. Let us analyze Thompson's experiment. Suppose that the rays are originally traveling in the x-direction, and are subject to a uniform electric field E in the z-direction and a uniform magnetic field B in the -y-direction. Let us assume, as Thompson did, that cathode rays are a stream of particles of mass m and charge q. The equation of motion of the particles in the z-direction is

 (1.5)

where v is the velocity of the particles in the x-direction. Thompson started off his experiment by only turning on the electric field in his apparatus and measuring the deflection d of the ray in the z-direction after it had traveled a distance l through the electric field. It is clear from the equation of motion that

 (1.6)

where the ''time of flight" t is replaced by l/v. This formula is only valid if d << l, which is assumed to be the case. Next, Thompson turned on the magnetic field in his apparatus and adjusted it so that the cathode ray was no longer deflected. The lack of deflection implies that the net force on the particles in the z-direction is zero. In other words, the electric and magnetic forces balance exactly. It follows from Eq. (1.5) that with a properly adjusted magnetic field strength

 (1.7)

Thus, Eqs. (1.6) and (1.7) and can be combined and rearranged to give the charge to mass ratio of the particles in terms of measured quantities:

 (1.8)

Using this method Thompson inferred that cathode rays were made up of negatively charged particles (the sign of the charge is obvious from the direction of the deflection in the electric field) with a charge to mass ratio of -1.7 × 1011 C/kg. A decade later in 1908 the American Robert Millikan performed his famous ''oil drop" experiment and discovered that mobile electric charges are quantized in units of -1.6 × 10-19 C. Assuming that mobile electric charges and the particles which make up cathode rays are one and the same thing, Thompson's and Millikan's experiments imply that the mass of these particles is 9.4 × 10-31 kg. Of course, this is the mass of an electron (the modern value is 9.1 × 10-31 kg), and -1.6 × 10-19 C is the charge of an electron. Thus, cathode rays are, in fact, streams of electrons which are emitted from a heated cathode and then accelerated because of the large voltage difference between the cathode and anode. If a particle is subject to a force f and moves a distance δr in a time interval δt then the work done on the particle by the force is

 (1.9)

The power input to the particle from the force field is

 (1.10)

where v is the particle's velocity. It follows from the Lorentz force law, Eq. (1.3), that the power input to a particle moving in electric and magnetic fields is

 (1.11)

Note that a charged particle can gain (or lose) energy from an electric field but not from a magnetic field. This is because the magnetic force is always perpendicular to the particle's direction of motion and, therefore, does no work on the particle [see Eq. (1.9)]. Thus, in particle accelerators magnetic fields are often used to guide particle motion (e.g., in a circle) but the actual acceleration is performed by electric fields.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.