المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
من آداب التلاوة
2024-11-24
مواعيد زراعة الفجل
2024-11-24
أقسام الغنيمة
2024-11-24
سبب نزول قوله تعالى قل للذين كفروا ستغلبون وتحشرون الى جهنم
2024-11-24
سبب نزول الآية 122 من سورة ال عمران
2024-11-24
أقسام الغزاة
2024-11-24

البطالة وفساد الأخلاق
2023-09-28
نشأة الشيك التاريخية
10-1-2019
أيـن تمـارس الإدارة الاستراتيجيـة
27-4-2019
المقومات الأساسية للتنمية- الموارد البشرية
11/9/2022
العبادات / تركيب الصلاة الروحيّ.
2024-03-18
المحمية الطبيعية
24-4-2022

Knot Complement  
  
2608   04:04 مساءً   date: 22-6-2021
Author : Adams, C. C.
Book or Source : "Knot Complements and Three-Manifolds." §9.1 in The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H....
Page and Part : ...


Read More
Date: 22-5-2021 1944
Date: 14-8-2021 4227
Date: 15-6-2021 1437

Knot Complement

Let R^3 be the space in which a knot K sits. Then the space "around" the knot, i.e., everything but the knot itself, is denoted R^3-K and is called the knot complement of K (Adams 1994, p. 84).

If a knot complement is hyperbolic (in the sense that it admits a complete Riemannian metric of constant Gaussian curvature -1), then this metric is unique (Prasad 1973, Hoste et al. 1998).


REFERENCES:

Adams, C. C. "Knot Complements and Three-Manifolds." §9.1 in The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 243-246, 1994.

Cipra, B. "To Have and Have Knot: When are Two Knots Alike?" Science 241, 1291-1292, 1988.

Gordon, C. and Luecke, J. "Knots are Determined by their Complements." J. Amer. Math. Soc. 2, 371-415, 1989.

Hoste, J.; Thistlethwaite, M.; and Weeks, J. "The First 1701936 Knots." Math. Intell. 20, 33-48, Fall 1998.

Prasad, G. "Stong Rigidity of Q-Rank 1 Lattices." Invent. Math. 21, 255-286, 1973.

Rolfsen, D. Knots and Links. Wilmington, DE: Publish or Perish Press, 1976.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.