المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تفريعات / القسم الثاني عشر
2025-04-06
تفريعات / القسم الحادي عشر
2025-04-06
تفريعات / القسم العاشر
2025-04-06
مساحة العمل الآمنة Safe Operating Area
2025-04-06
بداية حكم بسمتيك (1)
2025-04-06
محددات الغلق Fold-back Limiting
2025-04-06

Mannoproteins
31-12-2018
الأهمية النسبية للزراعة المروية في الدول العربية
21-6-2019
Adverbs of Reason
11-5-2021
الأميتر ذو الملف الثابت والمغناطيس المتحرك fixed-coil moving magnet ammeter
2-5-2019
تعريف الحشيشة
6-12-2015
فاطمة سيدة نساء العالمين
2024-10-29

Majorization  
  
692   04:34 مساءً   date: 1-11-2020
Author : Bhatia, R
Book or Source : Matrix Analysis. New York: Springer-Verlag, 1997.
Page and Part : ...


Read More
Date: 21-10-2020 1461
Date: 16-1-2021 2033
Date: 29-11-2020 1279

Majorization

Let x=(x_1,x_2,...,x_n) and y=(y_1,y_2,...,y_n) be nonincreasing sequences of real numbers. Then x majorizes y if, for each k=1, 2, ..., n,

 sum_(i=1)^kx_i>=sum_(i=1)^ky_i,

with equality if k=n. Note that some caution is needed when consulting the literature, since the direction of the inequality is not consistent from reference to reference. An order-free characterization along the lines of Horn's theorem is also readily available.

x majorizes y iff there exists a doubly stochastic matrix P such that y=Px. Intuitively, if x majorizes y, then y is more "mixed" than x. Horn's theorem relates the eigenvalues of a Hermitian matrix A to its diagonal entries using majorization. Given two vectors lambda,v in R^n, then lambda majorizes v iff there exists a Hermitian matrix A with eigenvalues lambda_i and diagonal entries v_i.


REFERENCES:

Bhatia, R. Matrix Analysis. New York: Springer-Verlag, 1997.

Horn, R. A. and Johnson, C. R. Matrix Analysis, Repr. with Corrections. Cambridge, England: Cambridge University Press, 1987.

Marshall, A. W. and Olkin, I. Inequalities: The Theory of Majorizations and Its Applications. New York: Academic Press, 1979.

Nielsen, M. A. "Conditions for a Class of Entanglement Transformations." Phys. Rev. Lett. 83, 436-439, 1999.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.