Read More
Date: 9-10-2019
1404
Date: 3-6-2019
1494
Date: 18-6-2019
1647
|
Let , , and be the lengths of the legs of a triangle opposite angles , , and . Then the law of cosines states
(1) |
|||
(2) |
|||
(3) |
Solving for the cosines yields the equivalent formulas
(4) |
|||
(5) |
|||
(6) |
This law can be derived in a number of ways. The definition of the dot product incorporates the law of cosines, so that the length of the vector from to is given by
(7) |
|||
(8) |
|||
(9) |
where is the angle between and .
The formula can also be derived using a little geometry and simple algebra. From the above diagram,
(10) |
|||
(11) |
|||
(12) |
The law of cosines for the sides of a spherical triangle states that
(13) |
|||
(14) |
|||
(15) |
(Beyer 1987). The law of cosines for the angles of a spherical triangle states that
(16) |
|||
(17) |
|||
(18) |
(Beyer 1987).
For similar triangles, a generalized law of cosines is given by
(19) |
(Lee 1997). Furthermore, consider an arbitrary tetrahedron with triangles , , , and . Let the areas of these triangles be , , , and , respectively, and denote the dihedral angle with respect to and for by . Then
(20) |
which gives the law of cosines in a tetrahedron,
(21) |
(Lee 1997). A corollary gives the nice identity
(22) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 79, 1972.
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 148-149, 1987.
Lee, J. R. "The Law of Cosines in a Tetrahedron." J. Korea Soc. Math. Ed. Ser. B: Pure Appl. Math. 4, 1-6, 1997.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|