Read More
Date: 30-3-2019
1662
Date: 25-8-2019
2661
Date: 15-5-2018
2021
|
The polynomials defined by
(1) |
where is a binomial coefficient. The Bernstein polynomials of degree form a basis for the power polynomials of degree . The first few polynomials are
(2) |
|||
(3) |
|||
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
|||
(9) |
|||
(10) |
|||
(11) |
The Bernstein polynomials are implemented in the Wolfram Language as BernsteinBasis[n, i, t].
The Bernstein polynomials have a number of useful properties (Farin 1993). They satisfy symmetry
(12) |
positivity
(13) |
for , normalization
(14) |
and with has a single unique local maximum of
(15) |
occurring at .
The envelope of the Bernstein polynomials for , 1, ..., (Mabry 2003) is given by
(16) |
illustrated above for .
REFERENCES:
Bernstein, S. "Démonstration du théorème de Weierstrass fondée sur le calcul des probabilities." Comm. Soc. Math. Kharkov 13, 1-2, 1912.
Farin, G. Curves and Surfaces for Computer Aided Geometric Design. San Diego: Academic Press, 1993.
Feller, W. An Introduction to Probability Theory and Its Applications, Vol. 2, 3rd ed. New York: Wiley, p. 222, 1971.
Kac, M. "Une remarque sur les polynomes de M. S. Bernstein." Studia Math. 7, 49-51, 1938.
Kac, M. "Reconnaissance de priorité relative à ma note, 'Une remarque sur les polynomes de M. S. Bernstein.' " Studia Math. 8, 170, 1939.
Lorentz, G. G. Bernstein Polynomials. Toronto: University of Toronto Press, 1953.
Mabry, R. "Problem 10990." Amer. Math. Monthly 110, 59, 2003.
Mathé, P. "Approximation of Hölder Continuous Functions by Bernstein Polynomials." Amer. Math. Monthly 106, 568-574, 1999.
Widder, D. V. The Laplace Transform. Princeton, NJ: Princeton University Press, p. 101, 1941.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|