المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الوزير نفررنبت في عهد رعمسيس الرابع
2024-11-24
أصناف الكفار وكيفية قتالهم
2024-11-24
الكاهن الأعظم «لآمون» (رعمسيس نخت) وأسرته
2024-11-24
نقل تماثيل الملك «رعمسيس الرابع»
2024-11-24
الصحافة الأدبية في دول المغرب العربي
2024-11-24
الصحافة الأدبية العربية
2024-11-24

نفی التحریف عند الإمام الخمیني في کتاب «کشف الأسرار»
27-04-2015
Arrangements
5-2-2016
Thiamine (Vitamin B1)
10-12-2021
شعر لابي العباس أحمد الإشبيلي
2023-02-11
الأهمية الاقتصادي للجت Alfalfa
2023-07-19
التهذيب بطريقة لائقة
18-8-2021

Weber-Sonine Formula  
  
1610   02:37 مساءً   date: 30-3-2019
Author : Iyanaga, S. and Kawada, Y.
Book or Source : Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press
Page and Part : ...


Read More
Date: 29-9-2018 2143
Date: 23-5-2019 1703
Date: 13-8-2019 3011

Weber-Sonine Formula

 

For R[mu+nu]>0|argp|<pi/4, and a>0,

 int_0^inftyJ_nu(at)e^(-p^2t^2)t^(mu-1)dt=(a/(2p))^nu(Gamma[1/2(nu+mu)])/(2p^muGamma(nu+1))_1F_1(1/2(nu+mu);nu+1;-(a^2)/(4p^2)),

where J_nu(z) is a Bessel function of the first kind, Gamma(z) is the gamma function, and _1F_1(a;b;z) is a confluent hypergeometric function of the first kind.


REFERENCES:

Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 1474, 1980.

Watson, G. N. A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge, England: Cambridge University Press, p. 393, 1966.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.