Read More
Date: 24-3-2019
1467
Date: 25-3-2019
1932
Date: 17-9-2018
1762
|
If a continuous function defined on an interval is sometimes positive and sometimes negative, it must be 0 at some point.
Bolzano (1817) proved the theorem (which effectively also proves the general case of intermediate value theorem) using techniques which were considered especially rigorous for his time, but which are regarded as nonrigorous in modern times (Grabiner 1983).
REFERENCES:
Apostol, T. M. Calculus, 2nd ed., Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra. Waltham, MA: Blaisdell, p. 143, 1967.
Bolzano, B. "Rein analytischer Beweis des Lehrsatzes dass zwischen je zwey Werthen, die ein entgegengesetztes Resultat gewaehren, wenigstens eine reele Wurzel der Gleichung liege." Prague, 1817. English translation in Russ, S. B. "A Translation of Bolzano's Paper on the Intermediate Value Theorem." Hist. Math. 7, 156-185, 1980.
Grabiner, J. V. "Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus." Amer. Math. Monthly 90, 185-194, 1983.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|