المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
Rise-fall Λyes Λno
2024-11-05
Fall-rise vyes vno
2024-11-05
Rise/yes/no
2024-11-05
ماشية اللحم كالميك في القوقاز Kalmyk breed
2024-11-05
Fallyes o
2024-11-05
تركيب وبناء جسم الحيوان (الماشية)
2024-11-05

طرق اكتساب حسن الخلق
30-3-2022
AAnti Dihydroxylation Of Ether
24-10-2019
أهم الأنواع في الإنتاج الحيواني - الجاموس
30-3-2021
سلام بن سلمة الخثعمي
31-10-2017
Enterococcus
3-3-2016
A cheep thief
16/9/2022


كاسيني – جيوفاني دومينكو  
  
402   01:22 مساءاً   التاريخ: 5-9-2016
المؤلف : دعنا, عدنان (2010)
الكتاب أو المصدر : معجم علماء الرياضيات
الجزء والصفحة : 282
القسم : الرياضيات / علماء الرياضيات / علماء الرياضيات /


أقرأ أيضاً
التاريخ: 26-8-2016 220
التاريخ: 26-8-2016 186
التاريخ: 10-8-2016 132
التاريخ: 14-8-2016 173

كاسيني – جيوفاني دومينكو

(1625 – 1712)

عالم فلك ورياضيات فرنسي من اصل ايطالي، ولد في بارينالدو وتوفي في باريس، دخل اكاديمية العلوم عام 1669.

من أعماله :

  • شكل كاسيني البيضاوي مجموعة نقاط من السطح الاقليدي حيث ان حاصل ضرب ابعادها عن نقطتين معروفتين يكون ثابتاً.


 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.