المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24
من آداب التلاوة
2024-11-24
مواعيد زراعة الفجل
2024-11-24
أقسام الغنيمة
2024-11-24
سبب نزول قوله تعالى قل للذين كفروا ستغلبون وتحشرون الى جهنم
2024-11-24

الاعراض المرضية التي تظهر على النبات المصاب
30-6-2016
Labial
4-7-2022
فوائد الثوم الطبية (استخدام الثوم لمنع تصلب الشريان)
25-3-2016
الحالة السائلة
16-3-2018
مقتل محمد بن عبد اللّه بن الحسن الملقّب بالنفس الزكية
7-03-2015
​الراديوم Radium
27-2-2017


Relativity and the philosophers  
  
789   01:20 صباحاً   التاريخ: 2024-02-25
المؤلف :  Richard Feynman, Robert Leighton and Matthew Sands
الكتاب أو المصدر : The Feynman Lectures on Physics
الجزء والصفحة : Volume I, Chapter 16
القسم : علم الفيزياء / الفيزياء الحديثة / النظرية النسبية / مواضيع عامة في النظرية النسبية /


أقرأ أيضاً
التاريخ: 23-1-2017 1454
التاريخ: 13-11-2020 1397
التاريخ: 23-1-2017 4205
التاريخ: 2024-08-09 451

Poincaré made the following statement of the principle of relativity: “According to the principle of relativity, the laws of physical phenomena must be the same for a fixed observer as for an observer who has a uniform motion of translation relative to him, so that we have not, nor can we possibly have, any means of discerning whether or not we are carried along in such a motion.”

When this idea descended upon the world, it caused a great stir among philosophers, particularly the “cocktail-party philosophers,” who say, “Oh, it is very simple: Einstein’s theory says all is relative!” In fact, a surprisingly large number of philosophers, not only those found at cocktail parties (but rather than embarrass them, we shall just call them “cocktail-party philosophers”), will say, “That all is relative is a consequence of Einstein, and it has profound influences on our ideas.” In addition, they say “It has been demonstrated in physics that phenomena depend upon your frame of reference.” We hear that a great deal, but it is difficult to find out what it means. Probably the frames of reference that were originally referred to were the coordinate systems which we use in the analysis of the theory of relativity. So the fact that “things depend upon your frame of reference” is supposed to have had a profound effect on modern thought. One might well wonder why, because, after all, that things depend upon one’s point of view is so simple an idea that it certainly cannot have been necessary to go to all the trouble of the physical relativity theory in order to discover it. That what one sees depends upon his frame of reference is certainly known to anybody who walks around, because he sees an approaching pedestrian first from the front and then from the back; there is nothing deeper in most of the philosophy which is said to have come from the theory of relativity than the remark that “A person looks different from the front than from the back.” The old story about the elephant that several blind men describe in different ways is another example, perhaps, of the theory of relativity from the philosopher’s point of view.

But certainly, there must be deeper things in the theory of relativity than just this simple remark that “A person looks different from the front than from the back.” Of course, relativity is deeper than this, because we can make definite predictions with it. It certainly would be rather remarkable if we could predict the behavior of nature from such a simple observation alone.

There is another school of philosophers who feel very uncomfortable about the theory of relativity, which asserts that we cannot determine our absolute velocity without looking at something outside, and who would say, “It is obvious that one cannot measure his velocity without looking outside. It is self-evident that it is meaningless to talk about the velocity of a thing without looking outside; the physicists are rather stupid for having thought otherwise, but it has just dawned on them that this is the case. If only we philosophers had realized what the problems were that the physicists had, we could have decided immediately by brainwork that it is impossible to tell how fast one is moving without looking outside, and we could have made an enormous contribution to physics.” These philosophers are always with us, struggling in the periphery to try to tell us something, but they never really understand the subtleties and depths of the problem.

Our inability to detect absolute motion is a result of experiment and not a result of plain thought, as we can easily illustrate. In the first place, Newton believed that it was true that one could not tell how fast he is going if he is moving with uniform velocity in a straight line. In fact, Newton first stated the principle of relativity, and one quotation made in the last chapter was a statement of Newton’s. Why then did the philosophers not make all this fuss about “all is relative,” or whatever, in Newton’s time? Because it was not until Maxwell’s theory of electrodynamics was developed that there were physical laws that suggested that one could measure his velocity without looking outside; soon it was found experimentally that one could not.

Now, is it absolutely, definitely, philosophically necessary that one should not be able to tell how fast he is moving without looking outside? One of the consequences of relativity was the development of a philosophy which said, “You can only define what you can measure! Since it is self-evident that one cannot measure a velocity without seeing what he is measuring it relative to, therefore it is clear that there is no meaning to absolute velocity. The physicists should have realized that they can talk only about what they can measure.” But that is the whole problem: whether or not one can define absolute velocity is the same as the problem of whether or not one can detect in an experiment, without looking outside, whether he is moving. In other words, whether or not a thing is measurable is not something to be decided a priori by thought alone, but something that can be decided only by experiment. Given the fact that the velocity of light is 186,000 mi/sec, one will find few philosophers who will calmly state that it is self-evident that if light goes 186,000 mi/sec inside a car, and the car is going 100,000 mi/sec, that the light also goes 186,000 mi/sec past an observer on the ground. That is a shocking fact to them; the very ones who claim it is obvious find, when you give them a specific fact, that it is not obvious.

Finally, there is even a philosophy which says that one cannot detect any motion except by looking outside. It is simply not true in physics. True, one cannot perceive a uniform motion in a straight line, but if the whole room were rotating, we would certainly know it, for everybody would be thrown to the wall—there would be all kinds of “centrifugal” effects. That the earth is turning on its axis can be determined without looking at the stars, by means of the so-called Foucault pendulum, for example. Therefore, it is not true that “all is relative”; it is only uniform velocity that cannot be detected without looking outside. Uniform rotation about a fixed axis can be. When this is told to a philosopher, he is very upset that he did not really understand it, because to him it seems impossible that one should be able to determine rotation about an axis without looking outside. If the philosopher is good enough, after some time he may come back and say, “I understand. We really do not have such a thing as absolute rotation; we are really rotating relative to the stars, you see. And so some influence exerted by the stars on the object must cause the centrifugal force.”

Now, for all we know, that is true; we have no way, at the present time, of telling whether there would have been centrifugal force if there were no stars and nebulae around. We have not been able to do the experiment of removing all the nebulae and then measuring our rotation, so we simply do not know. We must admit that the philosopher may be right. He comes back, therefore, in delight and says, “It is absolutely necessary that the world ultimately turn out to be this way: absolute rotation means nothing; it is only relative to the nebulae.” Then we say to him, “Now, my friend, is it or is it not obvious that uniform velocity in a straight line, relative to the nebulae should produce no effects inside a car?” Now that the motion is no longer absolute, but is a motion relative to the nebulae, it becomes a mysterious question, and a question that can be answered only by experiment.

What, then, are the philosophic influences of the theory of relativity? If we limit ourselves to influences in the sense of what kind of new ideas and suggestions are made to the physicist by the principle of relativity, we could describe some of them as follows. The first discovery is, essentially, that even those ideas which have been held for a very long time and which have been very accurately verified might be wrong. It was a shocking discovery, of course, that Newton’s laws are wrong, after all the years in which they seemed to be accurate. Of course, it is clear, not that the experiments were wrong, but that they were done over only a limited range of velocities, so small that the relativistic effects would not have been evident. But nevertheless, we now have a much humbler point of view of our physical laws—everything can be wrong!

Secondly, if we have a set of “strange” ideas, such as that time goes slower when one moves, and so forth, whether we like them or do not like them is an irrelevant question. The only relevant question is whether the ideas are consistent with what is found experimentally. In other words, the “strange ideas” need only agree with experiment, and the only reason that we have to discuss the behavior of clocks and so forth is to demonstrate that although the notion of the time dilation is strange, it is consistent with the way we measure time.

Finally, there is a third suggestion which is a little more technical but which has turned out to be of enormous utility in our study of other physical laws, and that is to look at the symmetry of the laws or, more specifically, to look for the ways in which the laws can be transformed and leave their form the same. When we discussed the theory of vectors, we noted that the fundamental laws of motion are not changed when we rotate the coordinate system, and now we learn that they are not changed when we change the space and time variables in a particular way, given by the Lorentz transformation. So this idea of studying the patterns or operations under which the fundamental laws are not changed has proved to be a very useful one.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.