Read More
Date: 29-4-2022
1356
Date: 20-3-2022
1168
Date: 13-5-2022
982
|
A pair of vertices of a graph is called an -critical pair if , where denotes the graph obtained by adding the edge to and is the clique number of . The -critical pairs are never edges in . A maximal stable set of is called a forced color class of if meets every -clique of , and -critical pairs within form a connected graph.
In 1993, G. Bacsó conjectured that if is a uniquely -colorable perfect graph, then has at least one forced color class. This conjecture is called the bold conjecture, and implies the strong perfect graph theorem. However, a counterexample of the conjecture was subsequently found by Sakuma (1997).
Sakuma, T. "A Counterexample to the Bold Conjecture." J. Graph Th. 25, 165-168, 1997.
Sebő, A. "On Critical Edges in Minimal Perfect Graphs." J. Combin. Th. B 67, 62-85, 1996.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
في مستشفى الكفيل.. نجاح عملية رفع الانزلاقات الغضروفية لمريض أربعيني
|
|
|