المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
المختلعة كيف يكون خلعها ؟
2024-11-01
المحكم والمتشابه
2024-11-01
الاستجابة اللاإرادية الجنسية للماشية sexual reflex
2024-11-01
المحاجة في الدين وتوضيح العقيدة
2024-11-01
الله هو الغني المقتدر
2024-11-01
الله تعالى هو الحاكم المطلق
2024-11-01


Domain  
  
1187   05:49 مساءً   date: 20-7-2021
Author : Evans, M.; Hastings, N.; and Peacock, B.
Book or Source : Statistical Distributions, 3rd ed. New York: Wiley, 2000.
Page and Part : ...


Read More
Date: 26-6-2021 1090
Date: 24-6-2021 1229
Date: 23-7-2021 2768

Domain

 

The term domain has (at least) three different meanings in mathematics.

DomainRange

The term domain is most commonly used to describe the set of values D for which a function (map, transformation, etc.) is defined. For example, a function f(x) that is defined for real values x in R has domain R, and is sometimes said to be "a function over the reals." The set of values to which D is sent by the function is then called the range.

Unfortunately, the term range is sometimes used in probability theory to mean domain (Feller 1968, p. 200; Evans et al. 2000). To confuse matters even more, the term "range" is more commonly used in statistics to refer to a completely different quantity, known in this work as the statistical range. As if this wasn't confusing enough, Evans et al. (2000, p. 6) define a probability domain to be the range of the distribution function of a probability density function.

The domain (in its usual established mathematical sense) of a probability density function (and therefore also its distribution function) is available with the undocumented Wolfram Language command DistributionDomain[dist].

The meaning of "domain" in topology is a connected open set.

Another meaning of "domain" is what is more properly known as an integral domain, i.e., a ring that

is commutative under multiplication, has an identity element, and no divisors of 0.


REFERENCES:

Evans, M.; Hastings, N.; and Peacock, B. Statistical Distributions, 3rd ed. New York: Wiley, 2000.

Feller, W. An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed. New York: Wiley, 1968.

Krantz, S. G. Handbook of Complex Variables. Boston, MA: Birkhäuser, p. 76, 1999.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.