المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تنفيذ وتقييم خطة إعادة الهيكلة (إعداد خطة إعادة الهيكلة1)
2024-11-05
مـعاييـر تحـسيـن الإنـتاجـيـة
2024-11-05
نـسـب الإنـتاجـيـة والغـرض مـنها
2024-11-05
المـقيـاس الكـلـي للإنتاجـيـة
2024-11-05
الإدارة بـمؤشـرات الإنـتاجـيـة (مـبادئ الإنـتـاجـيـة)
2024-11-05
زكاة الفطرة
2024-11-05


Invertible Knot  
  
2071   04:11 مساءً   date: 10-6-2021
Author : Burde, G. and Zieschang, H
Book or Source : Knots, 2nd rev.ed. Berlin: de Gruyter, 2002.
Page and Part : ...


Read More
Date: 28-6-2021 1555
Date: 10-8-2021 1155
Date: 9-6-2021 1934

Invertible Knot

An invertible knot is a knot that can be deformed via an ambient isotopy into itself but with the orientation reversed. A knot that is not invertible is said to be noninvertible.

Knots on ten and fewer crossing can be tested in the Wolfram Language to see if they are invertible using the command KnotData[knot"Invertible"].

Fox (1962, Problem 10, p. 169) pointed out several knots belonging to the standard table that seemed to be noninvertible. However, no noninvertible knots were proven to exist until Trotter (1964) discovered an infinite family, the smallest of which had 15 crossings.

NoninvertibleKnot

Three prime knots on 9 or fewer crossings are noninvertible: 8_(17)9_(32), and 9_(33) (Cromwell 2004, pp. 297-299). Some noninvertible knots can be obtained in the Wolfram Language as KnotData["Noninvertible"]. The simplest noninvertible knot is (illustrated above) was first postulated to be noninvertible by Fox (1962; Whitten 1972).

The following table gives the numbers of noninvertible and invertible knots of n crossings.

type OEIS counts
noninvertible A052403 0, 0, 0, 0, 0, 0, 0, 1, 2, 33, 187, 1144, 6919, 38118, 226581, 1309875, ...
invertible A052402 0, 0, 1, 1, 2, 3, 7, 20, 47, 132, 365, 1032, 3069, 8854, 26712, 78830, ...

No general technique is known for determining if a knot is invertible. Burde and Zieschang (1985) give a tabulation from which it is possible to extract the noninvertible knots up to 10 crossings.


REFERENCES:

Burde, G. and Zieschang, H. Knots, 2nd rev.ed. Berlin: de Gruyter, 2002.

Cromwell, P. Knots and Links. Cambridge, England: Cambridge University Press, 2004.

Fox, R. H. "A Quick Trip Through Knot Theory." In Topology of 3-Manifolds and Related Topics. Proc. The Univ. of Georgia Institute, 1961. Englewood Cliffs, NJ: Prentice-Hall, pp. 120-167, 1962.

Hoste, J.; Thistlethwaite, M.; and Weeks, J. "The First 1701936 Knots." Math. Intell. 20, 33-48, Fall 1998.

Sloane, N. J. A. Sequences A052402 and A052403 in "The On-Line Encyclopedia of Integer Sequences."

Trotter, H. F. "Noninvertible Knots Exist." Topology 2, 275-280, 1964.

Whitten, W. "Surgically Transforming Links into Noninvertible Knots." Amer. J. Math. 94, 1269-1281, 1972.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.