المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
مميزات نيماتودا الحوصلات جنس Globodera
2025-04-07
الأشربة المحرمة
2025-04-07
إنزيمات الفوسفاتيزات phosphatases
2025-04-07
إنزيم اللايبيز المعوي
2025-04-07
إنزيمات تحلل الكربوهيدرات carbohydrates
2025-04-07
إنزيمات nucleases
2025-04-07

[علي (عليه السلام) الناصر والفاتح والوصي]
22-10-2015
النشأ الأولى هي نشأة العالم
2/9/2022
الحركات بعهد المعتصم
14-3-2018
Electrophilic Addition Reactions of Alkenes
18-5-2017
الاثار الفردية المترتبة على اكتساب الجنسية العراقية
4-4-2016
القاضي أبو القاسم التنوخي
29-12-2015

Riemannian Geometry  
  
1732   06:27 مساءً   date: 27-5-2021
Author : Besson, G.; Lohkamp, J.; Pansu, P.; and Petersen, P
Book or Source : Riemannian Geometry. Providence, RI: Amer. Math. Soc., 1996.
Page and Part : ...


Read More
Date: 8-7-2021 1824
Date: 14-7-2021 1446
Date: 21-6-2021 1773

Riemannian Geometry

The study of manifolds having a complete Riemannian metric. Riemannian geometry is a general space based on the line element

 ds=F(x^1,...,x^n;dx^1,...,dx^n),

with F(x,y)>0 for y!=0 a function on the tangent bundle TM. In addition, F is homogeneous of degree 1 in y and of the form

 F^2=g_(ij)(x)dx^idx^j

(Chern 1996). If this restriction is dropped, the resulting geometry is called Finsler geometry.


REFERENCES:

Besson, G.; Lohkamp, J.; Pansu, P.; and Petersen, P. Riemannian Geometry. Providence, RI: Amer. Math. Soc., 1996.

Buser, P. Geometry and Spectra of Compact Riemann Surfaces. Boston, MA: Birkhäuser, 1992.

Chavel, I. Eigenvalues in Riemannian Geometry. New York: Academic Press, 1984.

Chavel, I. Riemannian Geometry: A Modern Introduction. New York: Cambridge University Press, 1994.

Chern, S.-S. "Finsler Geometry is Just Riemannian Geometry without the Quadratic Restriction." Not. Amer. Math. Soc. 43, 959-963, 1996.

do Carmo, M. P. Riemannian Geometry. Boston, MA: Birkhäuser, 1992.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.