Read More
Date: 26-9-2020
![]()
Date: 16-7-2020
![]()
Date: 23-9-2020
![]() |
Let be an elliptic curve defined over the field of rationals
having equation
![]() |
with and
integers. Let
be a point on
with integer coordinates and having infinite order in the additive group of rational points of
, and let
be a composite natural number such that
, where
is the Jacobi symbol. Then if
![]() |
is called an elliptic pseudoprime for
.
REFERENCES:
Balasubramanian, R. and Murty, M. R. "Elliptic Pseudoprimes. II." In Séminaire de Théorie des Nombres, Paris 1988-1989 (Ed. C. Goldstein). Boston, MA: Birkhäuser, pp. 13-25, 1990.
Gordon, D. M. "The Number of Elliptic Pseudoprimes." Math. Comput. 52, 231-245, 1989.
Gordon, D. M. "Pseudoprimes on Elliptic Curves." In Number Theory--Théorie des nombres:Proceedings of the International Number Theory Conference Held at Université Laval in 1987 (Ed. J. M. DeKoninck and C. Levesque). Berlin: de Gruyter, pp. 290-305, 1989.
Miyamoto, I. and Murty, M. R. "Elliptic Pseudoprimes." Math. Comput. 53, 415-430, 1989.
Ribenboim, P. The New Book of Prime Number Records, 3rd ed. New York: Springer-Verlag, pp. 132-134, 1996.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
العتبة العباسية المقدسة تقدم دعوة إلى كلية مزايا الجامعة للمشاركة في حفل التخرج المركزي الخامس
|
|
|