Read More
Date: 19-12-2020
772
Date: 21-12-2020
867
Date: 10-5-2020
682
|
Let a divisor of be called a 1-ary (or unitary) divisor if (i.e., is relatively prime to ). Then is called a -ary divisor of , written , if the greatest common -ary divisor of and is 1 (Cohen 1990).
In this notation, is written , and is written .
is an infinitary divisor of (with ) if .
Suryanarayana (1968) unfortunately uses a different and conflicting definition.
REFERENCES:
Abbott, P. "In and Out: -ary Divisors." Mathematica J. 9, 702-706, 2005.
Cohen, G. L. "On an Integer's Infinitary Divisors." Math. Comput. 54, 395-411, 1990.
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 54, 1994.
Suryanarayana, D. "The Number of -ary Divisors of an Integer." Monatschr. Math. 72, 445-450, 1968.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|