Read More
Date: 16-12-2020
![]()
Date: 30-4-2020
![]()
Date: 26-7-2020
![]() |
The prime number theorem shows that the th prime number
has the asymptotic value
![]() |
(1) |
as (Havil 2003, p. 182). Rosser's theorem makes this a rigorous lower bound by stating that
![]() |
(2) |
for (Rosser 1938). This result was subsequently improved to
![]() |
(3) |
where (Rosser and Schoenfeld 1975). The constant
was subsequently reduced to
(Robin 1983). Massias and Robin (1996) then showed that
was admissible for
and
. Finally, Dusart (1999) showed that
holds for all
(Havil 2003, p. 183). The plots above show
(black),
(blue), and
(red).
The difference between and
is plotted above. The slope of the difference taken out to
is approximately
.
REFERENCES:
Dusart, P. "The Prime is Greater than
for
." Math. Comput. 68, 411-415, 1999.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.
Massias, J.-P. and Robin, G. "Bornes effectives pour certaines fonctions concernant les nombres premiers." J. Théor. Nombres Bordeaux 8, 215-242, 1996.
Riesel, H. Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, pp. 56-57, 1994.
Robin, G. "Estimation de la fonction de Tschebychef sur le
-iéme nombre premier et grandes valeurs de la fonction
, nombres de diviseurs premiers de
." Acta Arith. 42, 367-389, 1983.
Robin, G. "Permanence de relations de récurrence dans certains développements asymptotiques." Publ. Inst. Math., Nouv. Sér. 43, 17-25, 1988.
Rosser, J. B. "The th Prime is Greater than
." Proc. London Math. Soc. 45, 21-44, 1938.
Rosser, J. B. and Schoenfeld, L. "Sharper Bounds for Chebyshev Functions and
." Math. Comput. 29, 243-269, 1975.
Salvy, B. "Fast Computation of Some Asymptotic Functional Inverses." J. Symb. Comput. 17, 227-236, 1994.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|