Read More
Date: 2-11-2020
6395
Date: 29-7-2020
1116
Date: 10-11-2020
2516
|
In chemistry, it is impossible to deal with a single atom or molecule because we can't see them or count them or weigh them. Chemists have selected a number of particles with which to work that is convenient. Since molecules are extremely small, you may suspect this number is going to be very large and you are right. The number of particles in this group is 6.02×1023 particles and the name of this group is the mole (the abbreviation for mole is mol). One mole of any object is 6.02×1023 of those objects. There is a very particular reason that this number was chosen and we hope to make that reason clear to you.
When chemists are carrying out chemical reactions, it is important that the relationship between the numbers of particles of each reactant is known. Any readily measurable mass of an element or compound contains an extraordinarily large number of atoms, molecules, or ions, so an extremely large numerical unit is needed to count them. The mole is used for this purpose.
The mole (symbol: mol) is the base unit of amount of substance ("number of substance") in the International System of Units or System International (SI), defined as exactly 6.02214076×1023 particles, e.g., atoms, molecules, ions or electrons. The current definition was adopted in November 2018, revising its old definition based on the number of atoms in 12 grams of carbon-12 (12C) (the isotope of carbon with relative atomic mass 12 Daltons by definition). For most purposes 6.022 × 1023 provides an adequate number of significant figures. Just as 1 mole of atoms contains 6.022 × 1023 atoms, 1 mole of eggs contains 6.022 × 1023 eggs. This number is called Avogadro’s number, after the 19th-century Italian scientist who first proposed a relationship between the volumes of gases and the numbers of particles they contain.
It is not obvious why eggs come in dozens rather than 10s or 14s, or why a ream of paper contains 500 sheets rather than 400 or 600. The definition of a mole—that is, the decision to base it on 12 g of carbon-12—is also arbitrary. The important point is that 1 mole of carbon—or of anything else, whether atoms, compact discs, or houses—always has the same number of objects: 6.022 × 1023.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|