Read More
Date: 11-10-2020
![]()
Date: 12-9-2020
![]()
Date: 19-12-2019
![]() |
Let be a prime number, then
![]() |
where and
are homogeneous polynomials in
and
with integer coefficients. Gauss (1965, p. 467) gives the coefficients of
and
up to
.
Kraitchik (1924) generalized Gauss's formula to odd squarefree integers . Then Gauss's formula can be written in the slightly simpler form
![]() |
where and
have integer coefficients and are of degree
and
, respectively, with
the totient function and
a cyclotomic polynomial. In addition,
is symmetric if
is even; otherwise it is antisymmetric.
is symmetric in most cases, but it antisymmetric if
is of the form
(Riesel 1994, p. 436). The following table gives the first few
and
s (Riesel 1994, pp. 436-442).
![]() |
![]() |
![]() |
5 | ![]() |
1 |
7 | ![]() |
![]() |
11 | ![]() |
![]() |
REFERENCES:
Gauss, C. F. §356-357 in Untersuchungen über höhere Arithmetik. New York: Chelsea, pp. 425-428 and 467, 1965.
Kraitchik, M. Recherches sue la théorie des nombres, tome I. Paris: Gauthier-Villars, pp. 93-129, 1924.
Kraitchik, M. Recherches sue la théorie des nombres, tome II. Paris: Gauthier-Villars, pp. 1-5, 1929.
Riesel, H. "Gauss's Formula for Cyclotomic Polynomials." In tables at end of Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, pp. 436-442, 1994.
|
|
للعاملين في الليل.. حيلة صحية تجنبكم خطر هذا النوع من العمل
|
|
|
|
|
"ناسا" تحتفي برائد الفضاء السوفياتي يوري غاغارين
|
|
|
|
|
ملاكات العتبة العباسية المقدسة تُنهي أعمال غسل حرم مرقد أبي الفضل العباس (عليه السلام) وفرشه
|
|
|