المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تربية الماشية في روسيا الفيدرالية
2024-11-06
تربية ماشية اللبن في البلاد الأفريقية
2024-11-06
تربية الماشية في جمهورية مصر العربية
2024-11-06
The structure of the tone-unit
2024-11-06
IIntonation The tone-unit
2024-11-06
Tones on other words
2024-11-06


Continued Fraction  
  
537   04:59 مساءً   date: 28-4-2020
Author : Havil, J.
Book or Source : Gamma: Exploring Euler,s Constant. Princeton, NJ: Princeton University Press, 2003.
Page and Part : ...


Read More
Date: 19-3-2020 526
Date: 24-7-2020 485
Date: 28-1-2021 737

Continued Fraction

The term "continued fraction" is used to refer to a class of expressions of which generalized continued fraction of the form

 b_0+(a_1)/(b_1+(a_2)/(b_2+(a_3)/(b_3+...))) 
 =b_0+K_(n=1)^infty(a_n)/(b_n)

(and the terms may be integers, reals, complexes, or functions of these) are the most general variety (Rocket and Szüsz 1992, p. 1).

Wallis first used the term "continued fraction" in his Arithmetica infinitorum of 1653 (Havil 2003, p. 93), although other sources list the publication date as 1655 or 1656. An archaic word for a continued fraction is anthyphairetic ratio.

The simple continued fraction takes a_n=1 for all n, leaving

 b_0+1/(b_1+1/(b_2+1/(b_3+...)))=b_0+K_(n=1)^infty1/(b_n).

If b_0 is an integer and the remainder of the partial denominators b_k for k>0 are positive integers, the continued fraction is known as a regular continued fraction.


REFERENCES:

Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.

Rockett, A. M. and Szüsz, P. Continued Fractions. New York: World Scientific, 1992.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.