المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الصورة الشعرية
2025-04-08
اسم المفعول
2025-04-08
تفريعات / القسم السادس عشر
2025-04-08
تفريعات / القسم الخامس عشر
2025-04-08
تفريعات / القسم الرابع عشر
2025-04-08
معنى قوله تعالى : هُوَ الَّذِي جَعَلَ الشَّمْسَ ضِيَاءً وَالْقَمَرَ نُورًا
2025-04-08

تقبيل القبر
19-8-2017
القلنسوات الجليدية
9/9/2022
قصة مسجد الضّرار
2-7-2017
جماعة الرفاق Peer Group في تنشئة الطفل
13-6-2017
علي بن بندار الهَوْسَمي
26-8-2016
من خطبة لأمير المؤمنين "ع"
2025-03-09

Silverman Constant  
  
786   04:27 مساءً   date: 21-3-2020
Author : Finch, S.
Book or Source : "Series Involving Arithmetic Functions." Jan. 24, 2007. http://algo.inria.fr/csolve/arth.pdf.
Page and Part : ...


Read More
Date: 14-10-2020 902
Date: 17-12-2019 883
Date: 11-8-2020 756

Silverman Constant

 

sum_(n=1)^(infty)1/(phi(n)sigma_1(n)) = product_(p prime)(1+sum_(k=1)^(infty)1/(p^(2k)-p^(k-1)))

(1)

= 1.786576459...

(2)

(OEIS A093827), where phi(n) is the totient function and sigma_1(n) is the divisor function.


REFERENCES:

Finch, S. "Series Involving Arithmetic Functions." Jan. 24, 2007. http://algo.inria.fr/csolve/arth.pdf.

Rusin, D. "Re: A Peculiar Sum" In The Mathematical Atlas. http://www.math.niu.edu/~rusin/known-math/96/numtheor.series.

Sloane, N. J. A. Sequence A093827 in "The On-Line Encyclopedia of Integer Sequences."

Zimmermann, P. "Re: A Peculiar Sum." http://algo.inria.fr/csolve/zimmermn.html.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.