Read More
Date: 3-3-2020
1394
Date: 11-1-2021
1214
Date: 17-10-2020
511
|
The Fibonacci factorial constant is the constant appearing in the asymptotic growth of the fibonorials (aka. Fibonacci factorials) . It is given by the infinite product
(1) |
where
(2) |
and is the golden ratio.
It can be given in closed form by
(3) |
|||
(4) |
|||
(5) |
(OEIS A062073), where is a q-Pochhammer symbol and is a Jacobi theta function.
REFERENCES:
Finch, S. R. "Fibonacci Factorials." §1.2.5 in Mathematical Constants. Cambridge, England: Cambridge University Press, p. 10, 2003.
Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, pp. 478 and 571, 1994.
Plouffe, S. http://pi.lacim.uqam.ca/piDATA/fibofact.txt.
Sloane, N. J. A. Sequence A062073 in "The On-Line Encyclopedia of Integer Sequences."
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|