المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تنفيذ وتقييم خطة إعادة الهيكلة (إعداد خطة إعادة الهيكلة1)
2024-11-05
مـعاييـر تحـسيـن الإنـتاجـيـة
2024-11-05
نـسـب الإنـتاجـيـة والغـرض مـنها
2024-11-05
المـقيـاس الكـلـي للإنتاجـيـة
2024-11-05
الإدارة بـمؤشـرات الإنـتاجـيـة (مـبادئ الإنـتـاجـيـة)
2024-11-05
زكاة الفطرة
2024-11-05

Calculation of ienclosed
22-12-2020
نماء مال التجارة بالنتاج مال تجارة
25-11-2015
منهج الآمدي في النقد
26-7-2017
مراقبة جودة الماء Measurement of Water Quality
2023-10-29
الأوضاع في الممالك النصرانية بعد موقعة الأرك (591هـ /1194م)
2023-12-07
المستشرقون ودموع التماسيح
28-5-2017

Fibonacci Factorial Constant  
  
539   05:37 مساءً   date: 16-2-2020
Author : Finch, S. R
Book or Source : "Fibonacci Factorials." §1.2.5 in Mathematical Constants. Cambridge, England: Cambridge University Press,
Page and Part : ...


Read More
Date: 3-3-2020 1394
Date: 11-1-2021 1214
Date: 17-10-2020 511

Fibonacci Factorial Constant

 

The Fibonacci factorial constant is the constant appearing in the asymptotic growth of the fibonorials (aka. Fibonacci factorials) n!_F. It is given by the infinite product

 

 F=product_(k=1)^infty(1-a^k),

(1)

where

 a=-1/(phi^2)

(2)

and phi is the golden ratio.

It can be given in closed form by

F = (-phi^(-2);-phi^(-2))_infty

(3)

=

(4)

= 1.2267420...

(5)

(OEIS A062073), where (q;q)_infty is a q-Pochhammer symbol and theta_n(z,q) is a Jacobi theta function.

 


REFERENCES:

Finch, S. R. "Fibonacci Factorials." §1.2.5 in Mathematical Constants. Cambridge, England: Cambridge University Press, p. 10, 2003.

Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, pp. 478 and 571, 1994.

Plouffe, S. http://pi.lacim.uqam.ca/piDATA/fibofact.txt.

Sloane, N. J. A. Sequence A062073 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.