Read More
Date: 19-9-2018
![]()
Date: 19-9-2018
![]()
Date: 25-7-2019
![]() |
The function is defined through the equation
![]() |
(1) |
where is a Bessel function of the first kind, so
![]() |
(2) |
where is the real part.
The function is implemented in the Wolfram Language as KelvinBer[nu, z].
The function has the series expansion
![]() |
(3) |
where is the gamma function (Abramowitz and Stegun 1972, p. 379), which can be written in closed form as
![]() |
(4) |
where is a modified Bessel function of the first kind.
The special case , commonly denoted
, corresponds to
![]() |
(5) |
where is the zeroth order Bessel function of the first kind. The function
has the series expansion
![]() |
(6) |
which can be written in closed form as
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Kelvin Functions." §9.9 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 379-381, 1972.
Prudnikov, A. P.; Marichev, O. I.; and Brychkov, Yu. A. "The Kelvin Functions ,
,
and
." §1.7 in Integrals and Series, Vol. 3: More Special Functions. Newark, NJ: Gordon and Breach, pp. 29-30, 1990.
Spanier, J. and Oldham, K. B. "The Kelvin Functions." Ch. 55 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 543-554, 1987.
|
|
لخفض ضغط الدم.. دراسة تحدد "تمارين مهمة"
|
|
|
|
|
طال انتظارها.. ميزة جديدة من "واتساب" تعزز الخصوصية
|
|
|
|
|
مشاتل الكفيل تزيّن مجمّع أبي الفضل العبّاس (عليه السلام) بالورد استعدادًا لحفل التخرج المركزي
|
|
|