المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تنفيذ وتقييم خطة إعادة الهيكلة (إعداد خطة إعادة الهيكلة1)
2024-11-05
مـعاييـر تحـسيـن الإنـتاجـيـة
2024-11-05
نـسـب الإنـتاجـيـة والغـرض مـنها
2024-11-05
المـقيـاس الكـلـي للإنتاجـيـة
2024-11-05
الإدارة بـمؤشـرات الإنـتاجـيـة (مـبادئ الإنـتـاجـيـة)
2024-11-05
زكاة الفطرة
2024-11-05


Quintic Equation  
  
2858   10:54 صباحاً   date: 17-2-2019
Author : Chowla, S
Book or Source : "On Quintic Equations Soluble by Radicals." Math. Student 13
Page and Part : ...


Read More
Date: 13-2-2019 756
Date: 17-1-2019 699
Date: 11-3-2019 1305

Quintic Equation

 

Unlike quadratic, cubic, and quartic polynomials, the general quintic cannot be solved algebraically in terms of a finite number of additions, subtractions, multiplications, divisions, and root extractions, as rigorously demonstrated by Abel (Abel's impossibility theorem) and Galois. However, certain classes of quintic equations can be solved in this manner.

QuinticGaloisGroups

Irreducible quintic equations can be associated with a Galois group, which may be a symmetric group S_n, metacyclic group M_n, dihedral group D_n, alternating group A_n, or cyclic group C_n, as illustrated above. Solvability of a quintic is then predicated by its corresponding group being a solvable group. An example of a quintic equation with solvable cyclic group is

 1024x^5-2816x^4+2816x^3-1232x^2+220x-11=0,

(1)

which arises in the computation of sin(pi/11).

In the case of a solvable quintic, the roots can be found using the formulas found in 1771 by Malfatti, who was the first to "solve" the quintic using a resolvent of sixth degree (Pierpont 1895).

The general quintic can be solved in terms of Jacobi theta functions, as was first done by Hermite in 1858. Kronecker subsequently obtained the same solution more simply, and Brioschi also derived the equation. To do so, reduce the general quintic

 a_5x^5+a_4x^4+a_3x^3+a_2x^2+a_1x+a_0=0

(2)

into Bring quintic form

 x^5-x+rho=0.

(3)

Defining

k = tan[1/4sin^(-1)((16)/(25sqrt(5)rho^2))]

(4)

s = {-sgn(I[rho]) for R[rho]=0; sgn(R[rho]) for R[rho]!=0

(5)

b = (s(k^2)^(1/8))/(2·5^(3/4)sqrt(k(1-k^2))),

(6)

where k is the elliptic modulus, the roots of the original quintic are then given by

x_1 = (-1)^(3/4)b{[m(e^(-2pii/5)q^(1/5))]^(1/8)+i[m(e^(2pii/5)q^(1/5))]^(1/8)}{[m(e^(-4pii/5)q^(1/5))]^(1/8)+[m(e^(4pii/5)q^(1/5))]^(1/8)}{[m(q^(1/5))]^(1/8)+q^(5/8)(q^5)^(-1/8)[m(q^5)]^(1/8)}

(7)

x_2 = b{-[m(q^(1/5))]^(1/8)+e^(3pii/4)[m(e^(2pii/5)q^(1/5))]^(1/8)}×{e^(-3pii/4)[m(e^(-2pii/5)q^(1/5))]^(1/8)+i[m(e^(4pii/5)q^(1/5))]^(1/8)}{i[m(e^(-4pii/5)q^(1/5))]^(1/8)+q^(5/8)(q^5)^(-1/8)[m(q^5)]^(1/8)}

(8)

x_3 = b{e^(-3pii/4)[m(e^(-2pii/5)q^(1/5))]^(1/8)-i[m(e^(-4pii/5)q^(1/5)]^(1/8))}×{-[m(q^(1/5))]^(1/8)-i[m(e^(4pii/5)q^(1/5))]^(1/8)}×{e^(3pii/4)[m(e^(2pii/5)q^(1/5))]^(1/8)+q^(5/8)(q^5)^(-1/8)[m(q^5)]^(1/8)}

(9)

x_4 = b{[m(q^(1/5))]^(1/8)-i[m(e^(-4pii/5)q^(1/5))]^(1/8)}×{-e^(3pii/4)[m(e^(2pii/5)q^(1/5))]^(1/8)-i[m(e^(4pii/5)q^(1/5))]^(1/8)}{e^(-3pii/4)[m(e^(-2pii/5)q^(1/5))]^(1/8)+q^(5/8)(q^5)^(-1/8)[m(q^5)]^(1/8)}

(10)

x_5 = b{[m(q^(1/5))]^(1/8)-e^(-3pii/4)[m(e^(-2pii/5)q^(1/5))]^(1/8)}×{-e^(3pii/4)[m(e^(2pii/5)q^(1/5))]^(1/8)+i[m(e^(-4pii/5)q^(1/5))]^(1/8)}{-i[m(e^(4pii/5)q^(1/5))]^(1/8)+q^(5/8)(q^5)^(-1/8)[m(q^5)]^(1/8)}.

(11)

where

 m(q)=(theta_2^4(0,q))/(theta_3^4(0,q))

(12)

is the inverse nome, which is expressible as a ratio of Jacobi theta functions.

Euler reduced the general quintic to

 x^5-10qx^2-p=0.

(13)

A quintic also can be algebraically reduced to principal quintic form

 x^5+a_2x^2+a_1x+a_0=0.

(14)

By solving a quartic, a quintic can be algebraically reduced to the Bring quintic form, as was first done by Jerrard. Runge (1885) and Cadenhad and Young found a parameterization of solvable quintics in the form

 x^5+ax+b=0

(15)

by showing that all irreducible solvable quintics with coefficients of x^4x^3, and x^2 missing have the following form

 x^5+(5mu^4(4nu+3))/(nu^2+1)x+(4mu^5(2nu+1)(4nu+3))/(nu^2+1)=0,

(16)

where mu and nu are rational.

Spearman and Williams (1994) showed that an irreducible quintic of the form (15) having rational coefficients is solvable by radicals iff there exist rational numbers epsilon=+/-1c>=0, and e!=0 such that

a = (5e^4(3-4epsilonc))/(c^2+1)

(17)

b = (-4e^5(11epsilon+2c))/(c^2+1)

(18)

(Spearman and Williams 1994). The roots are then

 x_j=e(omega^ju_1+omega^(2j)u_2+omega^(3j)u_3+omega^(4j)u_4),

(19)

where

u_1 = ((v_1^2v_3)/(D^2))^(1/5)

(20)

u_2 = ((v_3^2v_4)/(D^2))^(1/5)

(21)

u_3 = ((v_2^2v_1)/(D^2))^(1/5)

(22)

u_4 = ((v_4^2v_2)/(D^2))^(1/5)

(23)

v_1 = sqrt(D)+sqrt(D-epsilonsqrt(D))

(24)

v_2 = -sqrt(D)-sqrt(D+epsilonsqrt(D))

(25)

v_3 = -sqrt(D)+sqrt(D+epsilonsqrt(D))

(26)

v_4 = sqrt(D)-sqrt(D-epsilonsqrt(D))

(27)

D = c^2+1.

(28)

Felix Klein used a Tschirnhausen transformation to reduce the general quintic to the form

 y^5+5ay^2+5by+c=0.

(29)

He then solved the related icosahedral equation

 I(z,1,Z)=z^5(-1+11z^5+z^(10))^5 
 -[1+z^(30)-10005(z^(10)+z^(20))+522(-z^5+z^(25))]^2Z=0,

(30)

where Z is a function of radicals of ab, and c. The solution of this equation can be given in terms of hypergeometric functions as

 (Z^(-1/60)_2F_1(-1/(60),(29)/(60),4/5,1728Z))/(Z^(11/60)_2F_1((11)/(60),(41)/(60),6/5,1728Z)).

(31)

Another possible approach uses a series expansion, which gives one root (the first one in the list below) of the Bring quintic form. All five roots can be derived using differential equations (Cockle 1860, Harley 1862). Let

F_1(rho) = F_2(rho)

(32)

F_2(rho) = _4F_3(1/5,2/5,3/5,4/5;1/2,3/4,5/4;(3125)/(256)rho^4)

(33)

F_3(rho) = _4F_3(9/(20),(13)/(20),(17)/(20),(21)/(20);3/4,5/4,3/2;(3125)/(256)rho^4)

(34)

F_4(rho) = _4F_3(7/(10),9/(10),(11)/(10),(13)/(10);5/4,3/2,7/4;(3125)/(256)rho^4),

(35)

   

(36)

then the roots are

t_1 = -rho_4F_3(1/5,2/5,3/5,4/5;1/2,3/4,5/4;(3125)/(256)rho^4)

(37)

t_2 = -F_1(rho)+1/4rhoF_2(rho)+5/(32)rho^2F_3(rho)+5/(32)rho^3F_4(rho)

(38)

t_3 = -F_1(rho)+1/4rhoF_2(rho)-5/(32)rho^2F_3(rho)+5/(32)rho^3F_4(rho)

(39)

t_4 = -iF_1(rho)+1/4rhoF_2(rho)-5/(32)irho^2F_3(rho)-5/(32)rho^3F_4(rho)

(40)

t_5 = iF_1(rho)+1/4rhoF_2(rho)+5/(32)irho^2F_3(rho)-5/(32)rho^3F_4(rho).

(41)

This technique gives closed form solutions in terms of hypergeometric functions in one variable for any polynomialequation which can be written in the form

 x^p+bx^q+c.

(42)

Consider the quintic

 product_(j=0)^4[x-(omega^ju_1+omega^(4j)u_2)]=0,

(43)

where omega=e^(2pii/5) and u_1 and u_2 are complex numbers, which is related to de Moivre's quintic (Spearman and Williams 1994), and generalize it to

 product_(j=0)^4[x-(omega^ju_1+omega^(2j)u_2+omega^(3j)u_3+omega^(4j)u_4)]=0.

(44)

Expanding,

 (omega^ju_1+omega^(2j)u_2+omega^(3j)u_3+omega^(4j)u_4)^5-5U(omega^ju_1+omega^(2j)u_2+omega^(3j)u_3+omega^(4j)u_4)^3-5V(omega^ju_1+omega^(2j)u_2+omega^(3j)u_3+omega^(4j)u_4)^2+5W(omega^ju_1+omega^(2j)u_2+omega^(3j)u_3+omega^(4j)u_4)+[5(X-Y)-Z]=0,

(45)

where

U = u_1u_4+u_2u_3

(46)

V = u_1u_2^2+u_2u_4^2+u_3u_1^2+u_4u_3^2

(47)

W = u_1^2u_4^2+u_2^2u_3^2-u_1^3u_2-u_2^3u_4-u_3^3u_1-u_4^3u_3-u_1u_2u_3u_4

(48)

X = u_1^3u_3u_4+u_2^3u_1u_3+u_3^3u_2u_4+u_4^3u_1u_2

(49)

Y = u_1u_3^2u_4^2+u_2u_1^2u_3^2+u_3u_2^2u_4^2+u_4u_1^2u_2^2

(50)

Z = u_1^5+u_2^5+u_3^5+u_4^5

(51)

(Spearman and Williams 1994). The u_is satisfy

u_1u_4+u_2u_3=0

(52)

u_1u_2^2+u_2u_4^2+u_3u_1^2+u_4u_3^2=0

(53)

u_1^2u_4^2+u_2^2u_3^2-u_1^3u_2-u_2^3u_4-u_3^3u_1-u_4^3u_3-u_1u_2u_3u_4

(54)

=1/5a

(55)

5[(u_1^3u_3u_4+u_2^3u_1u_3+u_3^3u_3u_4+u_4^3u_1u_2)-(u_1u_3^2u_4^2+u_2u_1^2u_3^2+u_3u_2^2u_4^2+u_4u_1^2u_2^2)]-(u_1^5+u_2^5+u_3^5+u_4^5)=b

(56)

(Spearman and Williams 1994).


REFERENCES:

Birkhoff, G. and Mac Lane, S. "Insolvability of Quintic Equations." §15.8 in A Survey of Modern Algebra, 5th ed. New York: Macmillan, pp. 418-421, 1996.

Chowla, S. "On Quintic Equations Soluble by Radicals." Math. Student 13, 84, 1945.

Cockle, J. "Sketch of a Theory of Transcendental Roots." Phil. Mag. 20, 145-148, 1860.

Cockle, J. "On Transcendental and Algebraic Solution--Supplemental Paper." Phil. Mag. 13, 135-139, 1862.

Davis, H. T. Introduction to Nonlinear Differential and Integral Equations. New York: Dover, p. 172, 1960.

Drociuk, R. J. "On the Complete Solution to the Most General Fifth Degree Polynomial." 3 May 2000. http://arxiv.org/abs/math.GM/0005026.

Dummit, D. S. "Solving Solvable Quintics." Math. Comput. 57, 387-401, 1991.

Glashan, J. C. "Notes on the Quintic." Amer. J. Math. 8, 178-179, 1885.

Green, M. L. "On the Analytic Solution of the Equation of Fifth Degree." Compos. Math. 37, 233-241, 1978.

Harley, R. "On the Solution of the Transcendental Solution of Algebraic Equations." Quart. J. Pure Appl. Math. 5, 337-361, 1862.

Harley, R. "A Contribution to the History of the Problem of the Reduction of the General Equation of the Fifth Degree to a Trinomial Form." Quart. J. Math. 6, 38-47, 1864.

Hermite, C. "Sulla risoluzione delle equazioni del quinto grado." Annali di math. pura ed appl. 1, 256-259, 1858.

King, R. B. Beyond the Quartic Equation. Boston, MA: Birkhäuser, 1996.

King, R. B. and Cranfield, E. R. "An Algorithm for Calculating the Roots of a General Quintic Equation from Its Coefficients." J. Math. Phys. 32, 823-825, 1991.

Klein, F. "Sull' equazioni dell' Icosaedro nella risoluzione delle equazioni del quinto grado [per funzioni ellittiche]." Reale Istituto Lombardo, Rendiconto, Ser. 2 10, 1877.

Klein, F. "Über die Transformation der elliptischen Funktionen und die Auflösung der Gleichungen fünften Grades." Math. Ann.14, 111-144, 1879.

Klein, F. Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree. New York: Dover, 1956.

Livio, M. The Equation That Couldn't Be Solved. New York: Simon & Schuster, 2006.

Pierpont, J. "Zur Entwicklung der Gleichung V. Grades (bis 1858)." Monatsh. für Math. und Physik 6, 15-68, 1895.

Rosen, M. I. "Niels Hendrik Abel and Equations of the Fifth Degree." Amer. Math. Monthly 102, 495-505, 1995.

Runge, C. "Ueber die aufloesbaren Gleichungen von der Form x^5+ux+v=0." Acta Math. 7, 173-186, 1885.

Shurman, J. Geometry of the Quintic. New York: Wiley, 1997.

Spearman, B. K. and Williams, K. S. "Characterization of Solvable Quintics x^5+ax+b." Amer. Math. Monthly 101, 986-992, 1994.

Trott, M. "Solution of Quintics with Hypergeometric Functions." §3.13 in The Mathematica GuideBook for Symbolics. New York:Springer-Verlag, pp. 1110-1124, 2006. http://www.mathematicaguidebooks.org/.

 Trott, M. and Adamchik, V. "Solving the Quintic with Mathematica." http://library.wolfram.com/infocenter/TechNotes/158/.

 Wolfram Research. "Solving the Quintic." Poster. Champaign, IL: Wolfram Research, 1995. https://store.wolfram.com/view/misc/popup/solving-tqp.html.

Young, G. P. "Solution of Solvable Irreducible Quintic Equations, Without the Aid of a Resolvent Sextic." Amer. J. Math. 7, 170-177, 1885.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.