المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24
من آداب التلاوة
2024-11-24
مواعيد زراعة الفجل
2024-11-24
أقسام الغنيمة
2024-11-24
سبب نزول قوله تعالى قل للذين كفروا ستغلبون وتحشرون الى جهنم
2024-11-24

الظروف البيئية التي تساعد على ظهور الامراض النباتية
3-7-2016
المفعول المطلق
23-7-2020
العوامل المساعدة لتوليد أيون الاوكسونيو- أيون الكربونيوم
13-11-2017
شبرق شائك Ononis spinosa
3-5-2020
الفوائد التربوية لقصص الاطفال
17-1-2016
معنى كلمة همن‌
2-1-2016

Jacob Amsler  
  
128   10:12 صباحاً   date: 13-11-2016
Author : M S Mahoney
Book or Source : Biography in Dictionary of Scientific Biography
Page and Part : ...


Read More
Date: 12-11-2016 152
Date: 12-11-2016 97
Date: 12-11-2016 156

Born: 16 November 1823 in Stalden bei Brugg, Switzerland

Died: 3 January 1912 in Schaffhausen, Switzerland


Jacob Amsler's father was a farmer. He grew up in Stalden, a town in the Vispa valley six kilometres south of the main Rhône valley. His school education was in the local schools from which he graduated with the intention of studying theology.

Amsler studied theology first at the University of Jena and then at the University of Königsberg. It was at Königsberg that Amsler changed his course from theology to mathematics and physics. The reason, as is so often in such cases, was inspiring teaching. The teacher who changed Amsler's future was Franz Neumann whose lectures and laboratory sessions he attended at the University of Königsberg. In 1848 Amsler was awarded his doctorate from the University of Königsberg and he then returned to Switzerland to continue his education.

Back in Switzerland, Amsler worked for a year at the observatory in Geneva. He completed his studies at Zurich where he was awarded his habilitation, thus gaining the right to teach in universities. In 1850-51 he taught at the university in Zurich, teaching courses on mathematics and on mathematical physics topics. In 1851, wishing to have more time to devote to his research, Amsler took a position at the Gymnasium in Schaffhausen, a town in northern Switzerland situated on the bank of the Rhine. Indeed the Gymnasium did allow him to find more time to undertake research and as a consequence he published a number of article on mathematical physics over the next few years, in particular writing papers on magnetism, heat conduction and on the attraction of ellipsoids.

It is worth mentioning this last result in more detail for he worked on a problem which had quite a famous history. That was the problem of the attraction of an ellipsoid, which was first studied in depth by Ivory whose solution was later generalised by Poisson. Amsler extended the theorems of both Ivory and Poisson on this topic. It was a promising start to his research career in mathematical physics.

In 1854 Amsler married and this may have been the turning point in his career. His wife, Elsie Laffon, was the daughter of a well known Swiss scientist and, as was the custom in Switzerland at that time, he was known as Amsler-Laffon from this time on. Elsie and Jacob Amsler-Laffon's children were, however, always known by the name Amsler rather than Amsler-Laffon.

Shortly after his marriage Amsler changed his research interests and his career. He began to study the construction of precision mathematical instruments and quite quickly he had an idea for the design of a new type of planimeter. He invented the polar planimeter, a device for measuring areas enclosed by plane curves. It was based on polar coordinates whereas earlier instruments were based on cartesian coordinates. In 1856 Amsler published a paper Über das Planimeter in which he gave details of his idea. As Mahoney writes in [1], Amsler's planimeter:-

... adapted easily to the determination of static and inertial moments and to the coefficients of Fourier series: it proved especially useful to shipbuilders and railway engineers.

In order to make money from his invention, Amsler set up a workshop in Schaffhausen in 1854 specially designed to produce his polar planimeter. Three years later he had given up al his other interests to concentrate fully on producing instruments in the workshop. His shop produced 50 000 such instruments during his lifetime.

Amsler did not rest his fame on this single inspired idea but continued to invent new precision instruments. None of his other inventions came close to the polar planimeter in importance, but they were of sufficient quality to win him prizes at the world exhibition at Vienna in 1873, at Paris in 1881, and again in Paris in 1889. His brilliance was recognised with election to the Paris Académie des Sciences in 1892.


 

  1. M S Mahoney, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830900099.html

Articles:

  1. F Dubois, Die Schöpfungen Jakob und Alfred Amsler's ..., Mitteilungen der Naturforschenden Gesellschaft Schaffhausen 19 (1944), 209-273.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.