المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24
من آداب التلاوة
2024-11-24
مواعيد زراعة الفجل
2024-11-24
أقسام الغنيمة
2024-11-24
سبب نزول قوله تعالى قل للذين كفروا ستغلبون وتحشرون الى جهنم
2024-11-24

العوامل والمعمولات
27-02-2015
النحت والنقل
2024-10-09
POWER  SUPPLIES (Ruby Lasers​)
11-4-2016
The displacement current
3-1-2017
التربة المناسبة لزراعة التبغ
23-3-2017
Blaschke Product
27-11-2018

James Cockle  
  
123   02:28 مساءاً   date: 23-10-2016
Author : Biography by T A B Corley and A J Crilly
Book or Source : Dictionary of National Biography
Page and Part : ...


Read More
Date: 26-10-2016 76
Date: 26-10-2016 156
Date: 26-10-2016 95

Born: 14 January 1819 in Great Oakley, Essex, England

Died: 27 January 1895 in Bayswater, London, England


James Cockle's father, also named James Cockle, was a doctor who both treated patients and manufactured his own medicine to sell. James (senior) married Elizabeth (whose maiden name was probably Moss) in 1814; they had five sons and one daughter. The family moved from Great Oakley to London when James, the subject of this biography, was still a child. James entered Stormond House, Kensington in 1825 and was educated there until 1829 when he attended Charterhouse as a day pupil for two years. From 1831 to 1836 he attended a private school in Ramsgate where his talent for mathematics became apparent.

After completing his school education in 1836 he spent a year travelling in the West Indies, Cuba, and America. On 18 October 1837 he entered Trinity College, Cambridge where he took the mathematical tripos. Many intending to enter the legal profession studied mathematics at this time and indeed Cockle began his legal training at the Middle Temple in 1838. He was ranked 33 on the mathematical tripos of 1841 and graduated with a B.A. in the following year. Despite the relatively low position in the tripos, Cockle had demonstrated his mathematical abilities by having a paper published while still an undergraduate. Cockle was called to the bar in November 1846 and, although a barrister by profession, he maintained his interest in mathematics.

Cockle married Adelaide Catharine Wilkin on 22 August 1855; they had nine children. His legal career continued to flourish and he was appointed chief justice for Queensland, Australia, in 1863. His effort there in difficult circumstances were quite outstanding. The chief justice said [3]:-

I have had much knowledge of judicial men, and I am sure the Queen has never had a servant who more thoroughly earned every farthing of the wages he hoped to receive ...

For his efforts in Australia, then of course a British Colony, Cockle was knighted in 1869. He remained in Queensland until 1878, when he returned to England. He was supposed to spend a year in England, then return to Queensland, and indeed the people of Queensland were keen to see him return. However he resigned his post, deciding to retire and spend his retirement in England.

Despite the positions of high authority that Cockle held, he was remarkably productive as a mathematician publishing over 100 papers. He wrote papers on both pure and applied mathematics, as well as on the history of science. On the former topic he wrote on fluid dynamics and magnetism. Most of his work, however, was in pure mathematics where he studied algebra, the theory of equations, and differential equations. He had a collaborator on mathematical work, a Congregationalist minister named Robert Harley. Harley is the author of the articles [3] and [4]. Describing Cockle's contributions to differential equations Harley explained that his [4]:-

... mode of dealing with the theory of differential equations was marked by originality and independence of mind.

Cockle joined the Royal Astronomical Society in 1854, the Cambridge Philosophical Society in 1856, and the London Mathematical Society in 1870. He served as president of the London Mathematical Society from 1886 to 1888. Much earlier, in 1865, he had been honoured with election to the Royal Society of London. After his presidency of the London Mathematical Society, Cockle became a member of the Council of the Royal Astronomical Society, serving in this role from 1888 to 1892. Given the office he had held in Australia one would have expected him to take a leading role in many of the discussions. However [5]:-

On committees or councils he was singularly reticent, rarely venturing a suggestion unless appealed to, but the regularity of his attendance testified to the keen interest he took in the management of business.

After a brief illness, Cockle died at his home in St Stephen's Road, Bayswater. He was buried at Paddington cemetery.


 

  1. Biography by T A B Corley and A J Crilly, in Dictionary of National Biography (Oxford, 2004).

Articles:

  1. A R Forsyth, James Cockle, Proc. London Math. Soc. 26 (1895), 551-554.
  2. R Harley, James Cockle, Memoirs of the Literary and Philosophical Society of Manchester 9 (1895), 215-228.
  3. R Harley, James Cockle, Proc. Roy. Soc. London 59 (1895-6), xxx-xxxix.
  4. Monthly Notices of the Royal Astronomical Society 55 (1894-5), 192.
  5. E N Marks, Sir James Cockle, Australian Dictionary of Biography 3 (Melbourne University Press, 1993).

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.