المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
من هم المحسنين؟
2024-11-23
ما هي المغفرة؟
2024-11-23
{ليس لك من الامر شيء}
2024-11-23
سبب غزوة أحد
2024-11-23
خير أئمة
2024-11-23
يجوز ان يشترك في الاضحية اكثر من واحد
2024-11-23


Mikhail Vasilevich Ostrogradski  
  
149   01:29 مساءاً   date: 3-11-2016
Author : A P Youschkevitch
Book or Source : Michel Ostrogradski et le progres de la science au XIXe siecle
Page and Part : ...


Read More
Date: 23-10-2016 65
Date: 20-10-2016 165
Date: 26-10-2016 66


Born: 24 September 1801 in Pashennaya (now Poltava oblast), Ukraine

Died: 1 January 1862 in Poltava (now Ukraine)


Mikhail Ostrogradski attended the Poltava Gymnasium secondary school. When the time came for him to leave, he expressed a wish to have a military career. However his family was not wealthy and it was felt that a soldier's pay was not good enough. Eventually it was decided that he should take up a career in the civil service and in order to obtain a high ranking position a university education was necessary.

Ostrogradski entered the University of Kharkov in 1816 and studied physics and mathematics. In 1820 he took and passed the exams necessary for his degree but the minister of religious affairs and national education refused to confirm the decision and required him to retake the examinations.

The problem appears to have been his mathematics teacher Osipovsky who, in the year 1820, was suspended from his post on religious grounds. The officials who made this decision made Osipovsky's pupil suffer too. Officially the reason given was that Ostrogradski had not attended lectures on philosophy and theology. Ostrogradski refused to retake the examinations and never received his degree.

He left Russia to study in Paris. Here between 1822 and 1827 he attended lectures by Laplace, Fourier, Legendre, Poisson, Binet and Cauchy. He made rapid progress in Paris and soon began to publish papers in the Paris Academy.

His papers at this time show the influence of the mathematicians in Paris and he wrote on physics and the integral calculus. These papers were later incorporated in a major work on hydrodynamics with he published in Paris in 1832. Other results which he obtained at this time on residue theory appeared in Cauchy's works.

Ostrogradski went to St Petersburg in 1828. He presented three important papers on the theory of heat, double integrals and potential theory to the Russian Academy of Sciences. Largely on the strength of these papers he was elected an academician in the applied mathematics section. He made important contributions to partial differential equations, elasticity and to algebra publishing over 80 reports and giving lectures. His work on algebra was an extension of Abel's work on algebraic functions and their integrals.

From 1828 Ostrogradski lectured at the Naval Academy, also from 1830 he lectured at the Institute of Communication and, from 1832, also at the Pedagogical Institute.

Ostrogradski aimed high in his research and his object was to provide a combined theory of hydrodynamics, elasticity, heat and electricity. Of course this was far beyond what could be achieved but, by aiming at a grand scheme, he made major developments in a wide range of areas.

In 1840 he wrote on ballistics introducing the topic to Russia. His important work on ordinary differential equations considered methods of solution of non-linear equations which involved power series expansions in a parameter alpha. Liouville had produced similar results. Similarly some of his results on heat were similar to results produced by Lamé and by Duhamel.

From 1847 he was chief inspector for the teaching of mathematical sciences in military schools. He wrote many fine textbooks and established the conditions which allowed Chebyshev's school to flourish in St Petersburg. He should also be considered as the founder of the Russian school of theoretical mechanics.


 

  1. A P Youschkevitch, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830903249.html

Books:

  1. A P Youschkevitch, Michel Ostrogradski et le progres de la science au XIXe siecle (Paris, 1966).

Articles:

  1. V I Antropova, Remarks on M V Ostrogradskii's 'Memoir on heat diffusion in solid bodies' (Russian), Istor.-Mat. Issled. 16 (1965), 97-126.
  2. Y L Geronimus, Mikhail Vasilevich Ostrogradski, Essays on the Works of the Leading Figures in Russian Mechanics (Moscow, 1952), 13-57.
  3. B V Gnedenko, On M V Ostrogradskii 's works on the theory of probability (Russian), Istor.-Mat. Issled. 4 (1951), 99-123.
  4. B V Gnedenko, Mihail Vasil' evich Ostrogradskii (Russian), Uspekhi Matem. Nauk (N.S.) 6 5(45) (1951), 3-25.
  5. A T Grigorian, The works of M V Ostrogradskii in the realm of mathematics (Polish), Kwart. Hist. Nauki i Tech. 21 (1) (1976), 39-42.
  6. S N Kiro, An equation of M V Ostrogradskii in the mathematical theory of heat conduction (Russian), Voprosy Istor. Estestvoznan. i Tehn. 1(38) (1972), 31-32, 125, 134.
  7. I Z Stokalo, Works of M V Ostrogradskii in mathematical physics (Russian), Ukrain Mat. Zurnal 4 (1952), 3-24.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.