المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تربية الماشية في جمهورية مصر العربية
2024-11-06
The structure of the tone-unit
2024-11-06
IIntonation The tone-unit
2024-11-06
Tones on other words
2024-11-06
Level _yes_ no
2024-11-06
تنفيذ وتقييم خطة إعادة الهيكلة (إعداد خطة إعادة الهيكلة1)
2024-11-05

الأوكسجين في الغلاف الجوي Oxygen in the atmosphere
2023-10-12
الكوثرة المتعددة Multiplex PCR
5-4-2019
Kervaire,s Characterization Theorem
21-6-2021
أحكام صلاة الخوف
9-10-2018
صعتر Wild thyme (Thymus serpyllum)
2023-04-21
جرائم الأخلاق
11-7-2022

Alexis Fontaine des Bertins  
  
837   02:04 صباحاً   date: 21-3-2016
Author : R Taton
Book or Source : Biography in Dictionary of Scientific Biography
Page and Part : ...


Read More
Date: 29-6-2016 797
Date: 22-3-2016 1202
Date: 23-3-2016 962

Born: 13 August 1704 in Claveyson, Drôme, France
Died: 21 August 1771 in Cuiseaux, Saône-et-Loire, France

 

Alexis Fontaine's father was Jacques Fontaine and his mother was Madeleine Seytres. Jacques Fontaine was a royal notary, so he served the king in a legal capacity. Alexis enjoyed an upbringing in a fairly well off family and he was educated at the Collège de Tournon.

In 1732 Fontaine went to live near Paris, where he had acquired a residence, and he began to study mathematics under Castel. Around this time he became friends with Clairaut and Maupertuis, and he began to submit memoirs to the Académie des Sciences. As a result of these papers Fontaine was elected to the Academy in 1733 as an adjoint mécanicien and he was promoted geometer (a term used to mean mathematician at this time) in 1739. Although associated with the Academy for the rest of his life he did not participate in the work of the Academy, rather preferring to pursue his own agenda.

He led a solitary life showing little interest in the work of others. His papers are rather confused, and ignorant of the work of others, but do contain some very original ideas in the calculus of variations, differential equations and the theory of equations. Taton writes in [1]:-

Fontaine's work is of limited scope, often obscure, and willfully ignorant of the contributions of other mathematicians. Nevertheless, its inspiration is often original and it presents, amid confused developments, a number of ideas that proved fertile ...

In 1732 Fontaine gave a solution to the brachistochrone problem, in 1734 he gave a solution of the tautochrone problem which was more general than that given by Huygens, Newton, Euler or Jacob Bernoulli, and in 1737 he gave a solution to an orthogonal trajectories problem. The methods which he developed to solve these problems led to the calculus of variations. He used what he called the "fluxio-differential" method, so called because it used two independent first-order Leibniz type differential operators. This technique was praised by Johann Bernoulli, Euler and d'Alembert. Fontaine then used differential coefficients instead of differentials and Greenberg in [5] shows how Fontaine progressed from a calculus of variations to a calculus of several variables.

However Fontaine rather spoilt this fine contribution by, in 1767 and 1768, unjustly criticising Lagrange's method of variation presented in 1762. Fontaine had retired in 1765 to a country estate in Burgundy the purchase of which had stretched his finances to the point of almost leaving him bankrupt.

In [3] Greenberg considers Fontaine's work and that of his contemporaries who are usually given credit for laying the foundations for the calculus of several variables. Greenberg discusses the question of priority in [3] and also in [4]. One of the reasons that Fontaine has come off badly was his apparent attempts togain credit for ideas which had first been presented by others. For example [1]:-

In his work of 1764 Fontaine included a study of dynamics dated 1739 and based on a principle closely analogous to the one that d'Alembert had made the foundation of his treatise of 1743. Although Fontaine did not raise any claim of priority, he attracted the hostility of a powerful rival who subsequently took pains to destroy the reputation of his work, which - without being of the first rank - still merits mention for its original inspiration and for certain fecund ideas that it contains.


 

  1. R Taton, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830901467.html

Articles:

  1. J M C de Condorcet, Eloge de M Fontaine, Histoire de l'Académie royale des sciences 1771 (Paris, 1774), 105-116.
  2. J L Greenberg, Alexis Fontaine's route to the calculus of several variables, Historia Math. 11 (1) (1984), 22-38.
  3. J L Greenberg, Alexis Fontaine's integration of ordinary differential equations and the origins of the calculus of several variables, Ann. of Sci. 39 (1) (1982), 1-36.
  4. J L Greenberg, Alexis Fontaine's 'fluxio- differential method' and the origins of the calculus of several variables, Ann. of Sci. 38 (3) (1981), 251-290.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.