المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر
تنفيذ وتقييم خطة إعادة الهيكلة (إعداد خطة إعادة الهيكلة1)
2024-11-05
مـعاييـر تحـسيـن الإنـتاجـيـة
2024-11-05
نـسـب الإنـتاجـيـة والغـرض مـنها
2024-11-05
المـقيـاس الكـلـي للإنتاجـيـة
2024-11-05
الإدارة بـمؤشـرات الإنـتاجـيـة (مـبادئ الإنـتـاجـيـة)
2024-11-05
زكاة الفطرة
2024-11-05


Aminopeptidases  
  
2376   01:37 صباحاً   date: 3-12-2015
Author : A. Taylor
Book or Source : FASEB J. 7, 290–298
Page and Part :

Aminopeptidases

 

 Enzymes that catalyze the hydrolytic cleavage of the peptide bond that connects the N-terminal residue to the rest of a peptide, polypeptide, or protein are referred to as aminopeptidases (E.C. 3.4.11) (see Peptidases). The products of hydrolysis are, therefore, the released N-terminal amino acid and the remainder of the peptide chain. The latter can, in turn, also be an aminopeptidase substrate; hence these enzymes can release amino acids sequentially, ultimately resulting in complete hydrolysis of the polypeptide (though in practice this is not always observed). The principal determinant of specificity appears to be the free a-amino group of the N-terminal residue; hence these enzymes can release most, though not all, of the known amino acids, albeit at different rates. There are some aminopeptidases (eg, methionine aminopeptidase) that are quite limited in specificity. Usually, aminopeptidases can also act on amino acid amides and esters, which provide convenient substrates for routine assays. Some aminopeptidases sequentially remove dipeptides from the N-terminus of substrates, and these are referred to as dipeptidyl-peptidases. Others remove tripeptides and, hence, are tripeptidyl-peptidases.

Many aminopeptidases are zinc metalloenzymes, but some are serine proteinases or thiol proteases. Of those that require zinc, some have an active site containing a single ion, whereas others have a co-catalytic site that involves two closely spaced zinc ions.

 Aminopeptidases are widely distributed in various tissues and cells. They can be monomeric (a single polypeptide chain) or have up to 12 subunits. Many are integral components of cell membranes, but they are also found in the cytosol. They have a broad range of biological functions, including regulation of hormone concentration, control of the cell cycle, and recovery of amino acids from dietary peptides and proteins (1). All proteins synthesized by eukaryotic cells begin at their N-terminus with methionine, and its removal by methionine aminopeptidase is often crucial, not only for biological function of the protein but even for cell survival. Aminopeptidases also play important roles in the food industry—for example, ripening of cheese (2) and production of soy sauce (3).

Aminopeptidases are inhibited by the antitumor antibiotic bestatin [(2S,3R)-3-amino-2-hydroxy-4-phenylbutanol]-L-leucine, isolated from culture filtrates of Streptomyces olivoreticuli. It is a potent inhibitor of bovine lens aminopeptidases, with a Ki of 1.3 nM, and has numerous biological activities when administered to laboratory animals.

Membrane-bound aminopeptidases have often been identified on the basis of some other property, and then, once their amino acid sequence has been established, they are recognized to be aminopeptidases. Thus, the B-lymphocyte differentiation factor BP-1/6C3, whose expression correlates with proliferation and transformation of immature B cells (antibody-producing lymphocytes), has been shown to be identical to glutamyl aminopeptidase, also known as aminopeptidase A (4). Also the myeloid leukemia antigen CD-13 has been identified as aminopeptidase N (5), and the amino acid sequence of leukotriene A4 hydrolase revealed an aminopeptidase-like structure that led to the recognition of its aminopeptidase activity (6). Aminopeptidase N has also been shown to have a function unrelated to its enzymatic activity; that is, it serves as a cell-surface receptor for certain coronaviruses that cause upper respiratory infections (7).

 The amino acid sequence and three-dimensional structure of leucine aminopeptidase from bovine lens have been determined (8). This is a broad-specificity cytosolic enzyme found in tissues of all organisms. It has a high degree of sequence similarity to several other aminopeptidases, which suggests that they all share similar structures and catalytic mechanisms.

References

1. A. Taylor (1993) FASEB J. 7, 290–298

2. J. Meyer, D. Howald, R. Jordi, and M. Fuerst (1989) Milchwissenschaft 44, 678–681

3. T. Nakadai (1988) Nippon Shoyu Kenkyusho Zasshi 14, 50–56

4. Q. Wu et al. (1990) Proc. Natl. Acad. Sci. USA 87, 993–997

5. T. Inoue et al. (1994) J. Clin. Endocrinol. Metab. 79, 171–175

6. J. Z. Haeggstrom, A. Wetterholm, B. L. Vallee, and B. Samuelsson (1990) Biochem. Biophys. Res. Commun. 173, 431–437

7. B. Delmas et al. (1992) Nature 357, 417–420; Yeager et al. ibid. 420–422

8. S. K. Burley, P. R. David, A. Taylor, and W. N. Lipscomb (1990) Proc. Natl. Acad. Sci. USA 87, 6878–6882.    




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.