المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
الحالات التي لا يقبل فيها الإثبات بشهادة الشهود
2024-11-05
إجراءات المعاينة
2024-11-05
آثار القرائن القضائية
2024-11-05
مستحقو الصدقات
2024-11-05
استيلاء البريدي على البصرة.
2024-11-05
ولاية ابن رائق على البصرة
2024-11-05

Isotopes of Chromium
26-11-2018
الأنهار الأوربية
2024-08-31
تفاعلات السكريات الأحادية مع الاحماض :
6-1-2016
محمد بن محمد القليوبي
15-9-2016
المدارس البيئة الفلسفية- المدرسة الجغرافية البيئية الحديثة (التوافقية)
30-8-2022
هل التفسير الموضوعي تفسير بالرأي؟
2023-07-25


الخاصية الخطية Linear Property  
  
2605   12:25 صباحاً   التاريخ: 6-11-2015
المؤلف : صالح رشيد بطارسه
الكتاب أو المصدر : معجم الرياضيات
الجزء والصفحة : 128
القسم : الرياضيات / التفاضل و التكامل /


أقرأ أيضاً
التاريخ: 15-6-2019 1679
التاريخ: 25-8-2018 2082
التاريخ: 18-8-2019 1937
التاريخ: 2-5-2019 2435

وهي شقان :

الشق الأول : هو اخراج العدد الثابت خارج إشارة التكامل كما يلي :

والشق الثاني : هو تجزئة عملية التكامل ولكن حدٍ من حدود الاقتران وعلى وه الخصوص اقترانات كثيرة الحدود كما يلي :




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.