المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

الهدف السامي لخلق الانسان
2024-04-02
استئناس الحيوان
12-12-2016
زراعة الفلفل بالبذور مباشرة في الحقل الدائم لأجل الحصاد الالي
10-1-2023
Spin–Orbit Interaction
22-8-2016
Scrreening in Drug Discovery
21-12-2020
ماء البئر
27-9-2016

Apastamba  
  
806   01:36 صباحاً   date: 18-10-2015
Author : G G Joseph
Book or Source : The crest of the peacock
Page and Part : ...


Read More
Date: 20-10-2015 730
Date: 20-10-2015 1266
Date: 19-10-2015 1089

Born: about 600 BC in India
Died: about 600 BC in India

 

To write a biography of Apastamba is essentially impossible since nothing is known of him except that he was the author of a Sulbasutra which is certainly later than the Sulbasutra of Baudhayana. It would also be fair to say that Apastamba's Sulbasutra is the most interesting from a mathematical point of view. We do not know Apastamba's dates accurately enough to even guess at a life span for him, which is why we have given the same approximate birth year as death year.

Apastamba was neither a mathematician in the sense that we would understand it today, nor a scribe who simply copied manuscripts like Ahmes. He would certainly have been a man of very considerable learning but probably not interested in mathematics for its own sake, merely interested in using it for religious purposes. Undoubtedly he wrote the Sulbasutra to provide rules for religious rites and to improve and expand on the rules which had been given by his predecessors. Apastamba would have been a Vedic priest instructing the people in the ways of conducting the religious rites he describes.

The mathematics given in the Sulbasutras is there to enable the accurate construction of altars needed for sacrifices. It is clear from the writing that Apastamba, as well as being a priest and a teacher of religious practices, would have been a skilled craftsman. He must have been himself skilled in the practical use of the mathematics he described as a craftsman who himself constructed sacrificial altars of the highest quality.

The Sulbasutras are discussed in detail in the article Indian Sulbasutras. Below we give one or two details of Apastamba's Sulbasutra. This work is an expanded version of that of Baudhayana. Apastamba's work consisted of six chapters while the earlier work by Baudhayana contained only three.

The general linear equation was solved in the Apastamba's Sulbasutra. He also gives a remarkably accurate value for √2 namely

1 + 1/3 + 1/(3×4) - 1/(3×4×34).

which gives an answer correct to five decimal places. A possible way that Apastamba might have reached this remarkable result is described in the article Indian Sulbasutras.

As well as the problem of squaring the circle, Apastamba considers the problem of dividing a segment into 7 equal parts. The article [3] looks in detail at a reconstruction of Apastamba's version of these two problems.


 

Books:

  1. G G Joseph, The crest of the peacock (London, 1991).

Articles:

  1. R P Kulkarni, The value of π known to Sulbasutrakaras, Indian J. Hist. Sci. 13 (1) (1978), 32-41.
  2. G Kumari, Some significant results of algebra of pre-Aryabhata era, Math. Ed. (Siwan) 14 (1) (1980), B5-B13.
  3. A E Raik and V N Ilin, A reconstruction of the solution of certain problems from the Apastamba Sulba Sutra Apastamba (Russian), in A P Juskevic, S S Demidov, F A Medvedev and E I Slavutin, Studies in the history of mathematics 19 'Nauka' (Moscow, 1974), 220-222; 302

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.