Read More
Date: 22-3-2022
1369
Date: 1-5-2022
1340
Date: 17-5-2022
1048
|
A double-toroidal graph is a graph with graph genus 2 (West 2000, p. 266). Planar and toroidal graphs are therefore not double-toroidal.
The smallest simple double-toroidal graphs are on 8 vertices, of which there are exactly 15, and all of which are connected (E. Weisstein, Sep. 10, 2018). Known double-toroidal graphs on 10 and fewer vertices are illustrated above.
Duke and Haggard (1972; Harary et al. 1973) gave a criterion for the genus of all graphs on 8 and fewer vertices. Define the double-toroidal graphs
(1) |
|||
(2) |
|||
(3) |
where denotes minus the edges of . Then a subgraph of is double-toroidal if it contains a Kuratowski graph (i.e., is nonplanar) and contains at least one for .
Duke, R. A.; and Haggard, G. "The Genus of Subgraphs of ." Israel J. Math. 11, 452-455, 1972.
Harary, F.; Kainen, P. C.; Schwenk, A. J.; and White, A. T. "A Maximal Toroidal Graph Which Is Not a Triangulation." Math. Scand. 33, 108-112, 1973.
West, D. B. "Surfaces of Higher Genus." Introduction to Graph Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, pp. 266-269, 2000.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|