Read More
Date: 8-3-2022
1347
Date: 19-4-2022
1559
Date: 6-5-2022
1276
|
A graph is strongly perfect if every induced subgraph has an independent vertex set meeting all maximal cliques of (Berge and Duchet 1984, Ravindra 1999).
Every strongly perfect graph is perfect, but the converse is not necessarily true.
Every -free graph (i.e., every graph not containing the path graph as a vertex-induced subgraph), is strongly perfect (Ravindra 1999).
Berge, C. and Duchet, P. "Strongly Perfect Graphs." Ann. Disc. Math. 21, 57-61, 1984.
Ravindra, G. "Some Classes of Strongly Perfect Graphs." Disc. Math. 206, 197-203, 1999.
Wang, H. Y. "Which Claw-Free Graphs Are Strongly Perfect?" Disc. Math. 306, 2602-2629, 2006.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|