المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24


Presburger Arithmetic  
  
595   07:07 مساءً   date: 20-1-2022
Author : Presburger, M.
Book or Source : "Ueber die Vollstaendigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt." In...
Page and Part : ...


Read More
Date: 23-1-2022 927
Date: 13-2-2022 605
Date: 30-1-2022 832

Presburger Arithmetic


Presburger arithmetic is the first-order theory of the natural numbers containing addition but no multiplication. It is therefore not as powerful as Peano arithmetic. However, it is interesting because unlike the case of Peano arithmetic, there exists an algorithm that can decide if any given statement in Presburger arithmetic is true (Presburger 1929). No such algorithm exists for general arithmetic as a consequence of Robinson and Tarski's negative answer to the decision problem. Presburger (1929) also proved that his arithmetic is consistent (does not contain contradictions) and complete (every statement can either be proven or disproven), which is false for Peano arithmetic as a consequence of Gödel's first incompleteness theorem.

Fischer and Rabin (1974) proved that every algorithm which decides the truth of Presburger statements has a running time of at least 2^(2^(cn)) for some constant c, where n is the length of the Presburger statement. Therefore, the problem is one of the few currently known that provably requires more than polynomial run time.


REFERENCES

Fischer, M. J. and Rabin, M. O. "Super-Exponential Complexity of Presburger Arithmetic." Complexity of Computation. Proceedings of a Symposium in Applied Mathematics of the American Mathematical Society and the Society for Industrial and Applied Mathematics. Held in New York, April 18-19, 1973 (Ed. R. M. Karp). Providence, RI: Amer. Math. Soc., pp. 27-41, 1974.

Presburger, M. "Ueber die Vollstaendigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt." In Comptes Rendus du I congrés de Mathématiciens des Pays Slaves. Warsaw, Poland: pp. 92-101, 1929.

Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, pp. 1143 and 1152, 2002.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.