المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

معنى الايمان والخشوع
2024-08-26
المحرمات والمناهي في الإسلام
22-11-2015
ميثم التمار
19-12-2017
البروبوليس (غراء النحل) وفوائده
2024-03-04
BTEX
13-9-2017
وحدة الطاقة - إلكترون فولت
13-8-2021

Partial Order  
  
976   03:09 مساءً   date: 9-1-2022
Author : Ruskey, F.
Book or Source : "Information on Linear Extension." http://www.theory.csc.uvic.ca/~cos/inf/pose/LinearExt.html.
Page and Part : ...


Read More
Date: 26-12-2021 594
Date: 14-2-2017 1814
Date: 5-1-2022 1785

Partial Order

A relation "<=" is a partial order on a set S if it has:

1. Reflexivity: a<=a for all a in S.

2. Antisymmetry: a<=b and b<=a implies a=b.

3. Transitivity: a<=b and b<=c implies a<=c.

For a partial order, the size of the longest chain (antichain) is called the partial order length (partial order width). A partially ordered set is also called a poset.

A largest set of unrelated vertices in a partial order can be found using MaximumAntichain[g] in the Wolfram Language package Combinatorica` . MinimumChainPartition[g] in the Wolfram Language package Combinatorica` partitions a partial order into a minimum number of chains.


REFERENCES:

Ruskey, F. "Information on Linear Extension." http://www.theory.csc.uvic.ca/~cos/inf/pose/LinearExt.html.

Skiena, S. "Partial Orders." §5.4 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 203-209, 1990.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.