المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الميزان في الغذاء
2025-04-10
اعرف أهمية المعادن للمخ والجسم
2025-04-10
اعرف المقصود بمرض الزهايمر
2025-04-10
تحليل فلسفي لمفهوم الشرور
2025-04-10
النواقص الحاصلة في المعلولين وتزاحم الأسباب
2025-04-10
إتكيت تعامل الإعلامي مع الشخصية الانطوائية أو الفُصامية
2025-04-09

الاستلزام
25-4-2018
Integral Equation Neumann Series
30-12-2018
الإجراءات الإدارية للتضمين
2024-02-21
جوزة الطيب Myristica fragrams
10-11-2017
التصنيف العام لأنواع النقل - التصنيف وفقا للمسار
27-7-2019
الأنواع الدالة Indicator Species
22-9-2018

von Neumann-Bernays-Gödel Set Theory  
  
1080   06:01 مساءً   date: 30-12-2021
Author : Itô, K.
Book or Source : "Bernays-Gödel Set Theory." §33C in Encyclopedic Dictionary of Mathematics, 2nd ed., Vol. 1. Cambridge, MA: MIT Press
Page and Part : ...


Read More
Date: 17-1-2022 2219
Date: 26-12-2021 1073
Date: 14-2-2017 2998

von Neumann-Bernays-Gödel Set Theory

von Neumann-Bernays-Gödel set theory (abbreviated "NBG") is a version of set theory which was designed to give the same results as Zermelo-Fraenkel set theory, but in a more logically elegant fashion. It can be viewed as a conservative extension of Zermelo-Fraenkel set theory in the sense that a statement about sets is provable in NBG if and only if it is provable in Zermelo-Fraenkel set theory.

Zermelo-Fraenkel set theory is not finitely axiomatized. For example, the axiom of replacement is not really a single axiom, but an infinite family of axioms, since it is preceded by the stipulation that it is true "for any set-theoretic formula A(u,v)." Montague (1961) proved that Zermelo-Fraenkel set theory is not finitely axiomatizable, i.e., there is no finite set of axioms which is logically equivalent to the infinite set of Zermelo-Fraenkel axioms. In contrast, von Neumann-Bernays-Gödel set theory has only finitely many axioms, and this was the main motivation in its construction. This was accomplished by extending the language of Zermelo-Fraenkel set theory to be capable of talking about set classes.


REFERENCES:

Itô, K. (Ed.). "Bernays-Gödel Set Theory." §33C in Encyclopedic Dictionary of Mathematics, 2nd ed., Vol. 1. Cambridge, MA: MIT Press, p. 148, 1986.

Mendelson, E. Introduction to Mathematical Logic, 4th ed. London: Chapman & Hall, 1997.

Montague, R. "Semantic Closure and Non-Finite Axiomatizability. I." In Infinitistic Methods, Proceedings of the Symposium on Foundations of Mathematics, (Warsaw, 2-9 September 1959). Oxford, England: Pergamon, pp. 45-69, 1961.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.