Read More
Date: 11-1-2022
965
Date: 26-12-2021
885
Date: 5-1-2022
1004
|
Let and be any sets with empty intersection, and let denote the cardinal number of a set . Then
(Ciesielski 1997, p. 68; Dauben 1990, p. 173; Rubin 1967, p. 274; Suppes 1972, pp. 112-113).
It is an interesting exercise to show that cardinal addition is well-defined. The main steps are to show that for any cardinal numbers and , there exist disjoint sets and with cardinal numbers and , and to show that if and are disjoint and and disjoint with and then . The second of these is easy. The first is a little tricky and requires an appeal to the axioms of set theory. Also, one needs to restrict the definition of cardinal to guarantee if is a cardinal, then there is a set satisfying .
REFERENCES:
Ciesielski, K. Set Theory for the Working Mathematician. Cambridge, England: Cambridge University Press, 1997.
Dauben, J. W. Georg Cantor: His Mathematics and Philosophy of the Infinite. Princeton, NJ: Princeton University Press, 1990.
Rubin, J. E. Set Theory for the Mathematician. New York: Holden-Day, 1967.
Suppes, P. Axiomatic Set Theory. New York: Dover, 1972.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|