Read More
Date: 1-12-2021
![]()
Date: 15-9-2021
![]()
Date: 22-9-2021
![]() |
A B-spline is a generalization of the Bézier curve. Let a vector known as the knot vector be defined
![]() |
(1) |
where is a nondecreasing sequence with
, and define control points
, ...,
. Define the degree as
![]() |
(2) |
The "knots" , ...,
are called internal knots.
Define the basis functions as
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
where , 2, ...,
. Then the curve defined by
![]() |
(5) |
is a B-spline.
Specific types include the nonperiodic B-spline (first knots equal 0 and last
equal to 1; illustrated above) and uniform B-spline (internal knots are equally spaced). A B-spline with no internal knots is a Bézier curve.
A curve is times differentiable at a point where
duplicate knot values occur. The knot values determine the extent of the control of the control points.
-splines are implemented in the Wolfram Language as BSplineCurve[pts].
|
|
تحذير من "عادة" خلال تنظيف اللسان.. خطيرة على القلب
|
|
|
|
|
دراسة علمية تحذر من علاقات حب "اصطناعية" ؟!
|
|
|
|
|
العتبة العباسية المقدسة تحذّر من خطورة الحرب الثقافية والأخلاقية التي تستهدف المجتمع الإسلاميّ
|
|
|