المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24
من آداب التلاوة
2024-11-24
مواعيد زراعة الفجل
2024-11-24
أقسام الغنيمة
2024-11-24
سبب نزول قوله تعالى قل للذين كفروا ستغلبون وتحشرون الى جهنم
2024-11-24


Knot Linking  
  
3836   04:45 مساءً   date: 22-6-2021
Author : Bing, R. H.
Book or Source : The Geometric Topology of 3-Manifolds. Providence, RI: Amer. Math. Soc., 1983.
Page and Part : ...

Knot Linking

In general, it is possible to link two n-dimensional hyperspheres in (n+2)-dimensional space in an infinite number of inequivalent ways. In dimensions greater than n+2 in the piecewise linear category, it is true that these spheres are themselves unknotted. However, they may still form nontrivial links. In this way, they are something like higher dimensional analogs of two one-spheres in three dimensions. The following table gives the number of nontrivial ways that two n-dimensional hyperspheres can be linked in k dimensions.

D of spheres D of space distinct linkings
23 40 239
31 48 959
102 181 3
102 182 10438319
102 183 3

Two 10-dimensional hyperspheres link up in 12, 13, 14, 15, and 16 dimensions, unlink in 17 dimensions, then link up again in 18, 19, 20, and 21 dimensions. The proof of these results consists of an "easy part" (Zeeman 1962) and "hard part" (Ravenel 1986). The hard part is related to the calculation of the (stable and unstable) homotopy groups of spheres.


REFERENCES:

Bing, R. H. The Geometric Topology of 3-Manifolds. Providence, RI: Amer. Math. Soc., 1983.

Ravenel, D. Complex Cobordism and Stable Homotopy Groups of Spheres. New York: Academic Press, 1986.

Rolfsen, D. Knots and Links. Wilmington, DE: Publish or Perish Press, p. 7, 1976.

Zeeman, E. C. "Isotopies and Knots in Manifolds." In Topology of 3-Manifolds and Related Topics (Ed. M. K. Fort). Englewood Cliffs, NJ: Prentice-Hall, pp. 187-193, 1962.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.