المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تنفيذ وتقييم خطة إعادة الهيكلة (إعداد خطة إعادة الهيكلة1)
2024-11-05
مـعاييـر تحـسيـن الإنـتاجـيـة
2024-11-05
نـسـب الإنـتاجـيـة والغـرض مـنها
2024-11-05
المـقيـاس الكـلـي للإنتاجـيـة
2024-11-05
الإدارة بـمؤشـرات الإنـتاجـيـة (مـبادئ الإنـتـاجـيـة)
2024-11-05
زكاة الفطرة
2024-11-05

الكلورة الفائقة Superchlorination
6-5-2020
عدم التناسب بين الذنب وبين العقوبة
13-12-2015
Link Invariant
14-6-2021
Logarithmically Decreasing Function
13-3-2019
Crystals
9-7-2017
الماتريدية -
26-05-2015

Constant Problem  
  
2312   03:19 مساءً   date: 30-1-2021
Author : Chow, T. Y.
Book or Source : "What is a Closed-Form Number." Amer. Math. Monthly 106
Page and Part : ...


Read More
Date: 30-1-2021 1019
Date: 9-11-2020 546
Date: 17-12-2020 693

Constant Problem

Given an expression involving known constants, integration in finite terms, computation of limits, etc., determine if the expression is equal to zero. The constant problem, sometimes also called the identity problem (Richardson 1968) is a very difficult unsolved problem in transcendental number theory. However, it is known that the problem is undecidable if the expression involves oscillatory functions such as sine. However, the Ferguson-Forcade algorithm is a practical algorithm for determining if there exist integers a_i for given real numbers x_i such that

 a_1x_1+a_2x_2+...+a_nx_n=0,

or else establishing bounds within which no relation can exist (Bailey 1988).


REFERENCES:

Bailey, D. H. "Numerical Results on the Transcendence of Constants Involving pie, and Euler's Constant." Math. Comput. 50, 275-281, 1988.

Chow, T. Y. "What is a Closed-Form Number." Amer. Math. Monthly 106, 440-448, 1999.

Chen, Z.-Z. and Kao, M.-Y. "Reducing Randomness via Irrational Numbers." 7 Jul 1999. https://arxiv.org/abs/cs.DS/9907011.

Richardson, D. "Some Unsolvable Problems Involving Elementary Functions of a Real Variable." J. Symbolic Logic 33, 514-520, 1968.

Richardson, D. "The Elementary Constant Problem." In Proc. Internat. Symp. on Symbolic and Algebraic Computation, Berkeley, July 27-29, 1992 (Ed. P. S. Wang). ACM Press, 1992.

Richardson, D. "How to Recognize Zero." J. Symb. Comp. 24, 627-645, 1997.

Sackell, J. "Zero-Equivalence in Function Fields Defined by Algebraic Differential Equations." Trans. Amer. Math. Soc. 336, 151-171, 1993.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.