Read More
Date: 26-8-2020
629
Date: 3-2-2020
924
Date: 1-6-2020
552
|
The sequence of numbers obtained by letting , and defining
where is the least prime factor. The first few terms are 2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, ... (OEIS A000945). Only 43 terms of the sequence are known; the 44th requires factoring a composite 180-digit number.
REFERENCES:
Guy, R. K. and Nowakowski, R. "Discovering Primes with Euclid." Delta (Waukesha) 5, 49-63, 1975.
Mullin, A. A. "Recursive Function Theory." Bull. Amer. Math. Soc. 69, 737, 1963.
Naur, T. "Mullin's Sequence of Primes Is Not Monotonic." Proc. Amer. Math. Soc. 90, 43-44, 1984.
Sloane, N. J. A. Sequence A000945/M0863 in "The On-Line Encyclopedia of Integer Sequences."
Wagstaff, S. S. "Computing Euclid's Primes." Bull. Institute Combin. Applications 8, 23-32, 1993.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|