المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
نقل تماثيل الملك «رعمسيس الرابع»
2024-11-24
الصحافة الأدبية في دول المغرب العربي
2024-11-24
الصحافة الأدبية العربية
2024-11-24
الصحافة الأدبية في أوروبا وأمريكا
2024-11-24
صحف النقابات المهنية
2024-11-24
السبانخ Spinach (من الزراعة الى الحصاد)
2024-11-24

الإمام موسى الكاظم عليه‌ السلام والتفسير
29-09-2015
هل الظلمة من المخلوقات
8-10-2014
السياسـة الاقتصاديـة والنظـم الاقتصاديـة
17-5-2019
تعسف الأغلبية عند اضافة الارباح الى الاحتياطي
2023-03-31
ضوء light
7-6-2017
كراهة الخضاب للحائض
28-12-2015

Triangular Number  
  
2007   04:34 مساءً   date: 22-12-2020
Author : Ball, W. W. R. and Coxeter, H. S. M.
Book or Source : Mathematical Recreations and Essays, 13th ed. New York: Dover
Page and Part : ...


Read More
Date: 13-10-2020 693
Date: 19-9-2020 706
Date: 8-12-2020 1307

Triangular Number

 TriangularNumber

The triangular number T_n is a figurate number that can be represented in the form of a triangular grid of points where the first row contains a single element and each subsequent row contains one more element than the previous one. This is illustrated above for T_1=1T_2=3, .... The triangular numbers are therefore 1, 1+21+2+31+2+3+4, ..., so for n=1, 2, ..., the first few are 1, 3, 6, 10, 15, 21, ... (OEIS A000217).

More formally, a triangular number is a number obtained by adding all positive integers less than or equal to a given positive integer n, i.e.,

T_n = sum_(k=1)^(n)k

(1)

= 1/2n(n+1)

(2)

= (n+1; 2),

(3)

where (n; k) is a binomial coefficient. As a result, the number of distinct wine glass clinks that can be made among a group of n people (which is simply (n; 2)) is given by the triangular number T_(n-1).

The triangular number T_n=n+(n-1)+...+2+1 is therefore the additive analog of the factorial n!=n·(n-1)...2·1.

Binary representation of the triangular numbers

A plot of the first few triangular numbers represented as a sequence of binary bits is shown above. The top portion shows T_1 to T_(255), and the bottom shows the next 510 values.

The odd triangular numbers are given by 1, 3, 15, 21, 45, 55, ... (OEIS A014493), while the even triangular numbers are 6, 10, 28, 36, 66, 78, ... (OEIS A014494).

T_4=10 gives the number and arrangement of the tetractys (which is also the arrangement of bowling pins), while T_5=15 gives the number and arrangement of balls in billiards. Triangular numbers satisfy the recurrence relation

 T_(n+1)^2-T_n^2=(n+1)^3,

(4)

as well as

T_n^2+T_(n-1)^2 = T_(n^2)

(5)

3T_n+T_(n-1) = T_(2n)

(6)

3T_n+T_(n+1) = T_(2n+1)

(7)

1+3+5+...+(2n-1) = T_n+T_(n-1).

(8)

TriangleSquare

In addition, the triangle numbers can be related to the square numbers by

(2n+1)^2 = 8T_n+1

(9)

= T_(n-1)+6T_n+T_(n+1)

(10)

(Conway and Guy 1996), as illustrated above (Wells 1991, p. 198).

The triangular numbers have the ordinary generating function

f(x) = x/((1-x)^3)

(11)

= x+3x^2+6x^3+10x^4+15x^5+...

(12)

and exponential generating function

g(x) = (1+2x+1/2x^2)e^x

(13)

= 1+3x+3x^2+5/3x^3+5/8x^4+...

(14)

= 1+3x/(1!)+6(x^2)/(2!)+10(x^3)/(3!)+15(x^4)/(4!)+...

(15)

(Sloane and Plouffe 1995, p. 9).

Every other triangular number T_n is a hexagonal number, with

 H_n=T_(2n-1).

(16)

In addition, every pentagonal number is 1/3 of a triangular number, with

 P_n=1/3T_(3n-1).

(17)

The sum of consecutive triangular numbers is a square number, since

T_r+T_(r-1) = 1/2r(r+1)+1/2(r-1)r

(18)

= 1/2r[(r+1)+(r-1)]

(19)

= r^2.

(20)

Interesting identities involving triangular, square, and cubic numbers are

sum_(k=1)^(2n-1)(-1)^(k+1)T_k = n^2

(21)

sum_(k=1)^(n)k^3 = T_n^2

(22)

= 1/4n^2(n+1)^2

(23)

sum_(k=1)^(n)(2k-1)^3 = T_(2n^2-1)

(24)

= n^2(2n^2-1).

(25)

Triangular numbers also unexpectedly appear in integrals involving the absolute value of the form

 int_0^1int_0^1|x-y|^ndxdy=2/((n+1)(n+2)).

(26)

All even perfect numbers are triangular T_p with prime p. Furthermore, every even perfect number P>6 is of the form

 P=1+9T_n=T_(3n+1),

(27)

where T_n is a triangular number with n=8j+2 (Eaton 1995, 1996). Therefore, the nested expression

 9(9...(9(9(9(9T_n+1)+1)+1)+1)...+1)+1

(28)

generates triangular numbers for any T_n. An integer k is a triangular number iff 8k+1 is a square number >1.

The numbers 1, 36, 1225, 41616, 1413721, 48024900, ... (OEIS A001110) are square triangular numbers, i.e., numbers which are simultaneously triangular and square (Pietenpol 1962). The corresponding square roots are 1, 6, 35, 204, 1189, 6930, ... (OEIS A001109), and the indices of the corresponding triangular numbers T_n are n=1, 8, 49, 288, 1681, ... (OEIS A001108).

Numbers which are simultaneously triangular and tetrahedral satisfy the binomial coefficient equation

 T_n=(n+1; 2)=(m+2; 3)=Te_m,

(29)

the only solutions of which are

Te_3=T_4 = 10

(30)

Te_8=T_(15) = 120

(31)

Te_(20)=T_(55) = 1540

(32)

Te_(34)=T_(119) = 7140

(33)

(Guy 1994, p. 147).

The following table gives triangular numbers T_p having prime indices p.

class Sloane sequence
T_n with prime indices A034953 3, 6, 15, 28, 66, 91, 153, 190, 276, 435, 496, ...
odd T_n with prime indices A034954 3, 15, 91, 153, 435, 703, 861, 1431, 1891, 2701, ...
even T_n with prime indices A034955 6, 28, 66, 190, 276, 496, 946, 1128, 1770, 2278, ...

The smallest of two integers for which n^3-13 is four times a triangular number is 5, as determined by Cesàro in 1886 (Le Lionnais 1983, p. 56). The only Fibonacci numbers which are triangular are 1, 3, 21, and 55 (Ming 1989), and the only Pell number which is triangular is 1 (McDaniel 1996). The beast number 666 is triangular, since

 T_(6·6)=T_(36)=666.

(34)

In fact, it is the largest repdigit triangular number (Bellew and Weger 1975-76).

The positive divisors of 4T(n)+1 are all of the form 4k+1, those of 6T(n)+1 are all of the form 6k+1, and those of 10T(n)+1 are all of the form 10k+/-1; that is, they end in the decimal digit 1 or 9.

Fermat's polygonal number theorem states that every positive integer is a sum of at most three triangular numbers, four square numbers, five pentagonal numbers, and n n-polygonal numbers. Gauss proved the triangular case (Wells 1986, p. 47), and noted the event in his diary on July 10, 1796, with the notation

 **EUpsilonRHKA    num=Delta+Delta+Delta.

(35)

This case is equivalent to the statement that every number of the form 8m+3 is a sum of three odd squares (Duke 1997). Dirichlet derived the number of ways in which an integer m can be expressed as the sum of three triangular numbers (Duke 1997). The result is particularly simple for a prime of the form 8m+3, in which case it is the number of squares mod 8m+3 minus the number of nonsquares mod 8m+3 in the interval from 1 to 4m+1 (Deligne 1973, Duke 1997).

The only triangular numbers which are the product of three consecutive integers are 6, 120, 210, 990, 185136, 258474216 (OEIS A001219; Guy 1994, p. 148).


REFERENCES:

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 59, 1987.

Bellew, D. W. and Weger, R. C. "Repdigit Triangular Numbers." J. Recr. Math. 8, 96-97, 1975-76.

Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 33-38, 1996.

Deligne, P. "La Conjecture de Weil." Inst. Hautes Études Sci. Pub. Math. 43, 273-308, 1973.

Dudeney, H. E. Amusements in Mathematics. New York: Dover, pp. 67 and 167, 1970.

Duke, W. "Some Old Problems and New Results about Quadratic Forms." Not. Amer. Math. Soc. 44, 190-196, 1997.

Eaton, C. F. "Problem 1482." Math. Mag. 68, 307, 1995.

Eaton, C. F. "Perfect Number in Terms of Triangular Numbers." Solution to Problem 1482. Math. Mag. 69, 308-309, 1996.

Guy, R. K. "Sums of Squares" and "Figurate Numbers." §C20 and §D3 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 136-138 and 147-150, 1994.

Hindin, H. "Stars, Hexes, Triangular Numbers and Pythagorean Triples." J. Recr. Math. 16, 191-193, 1983-1984.

Hobson, N. "Triangular Numbers." https://www.qbyte.org/puzzles/p149s.html#triangular.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 56, 1983.

McDaniel, W. L. "Triangular Numbers in the Pell Sequence." Fib. Quart. 34, 105-107, 1996.

Ming, L. "On Triangular Fibonacci Numbers." Fib. Quart. 27, 98-108, 1989.

Pappas, T. "Triangular, Square & Pentagonal Numbers." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, p. 214, 1989.

Pietenpol, J. L. "Square Triangular Numbers." Amer. Math. Monthly 169, 168-169, 1962.

Ram, R. "Triangle Numbers that are Perfect Squares." https://users.tellurian.net/hsejar/maths/triangle/.

Satyanarayana, U. V. "On the Representation of Numbers as the Sum of Triangular Numbers." Math. Gaz. 45, 40-43, 1961.

Sloane, N. J. A. Sequences A000217/M2535, A001108/M4536, A001109/M4217, A001110/M5259, A001219, A014493, A014494, A034953, A034955, and A034955 in "The On-Line Encyclopedia of Integer Sequences."

Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995.

Trotter, T. Jr. "Some Identities for the Triangular Numbers." J. Recr. Math. 6, 128-135, 1973.

Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, pp. 47-48, 1986.

Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, p. 199, 1991.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.