Read More
Date: 12-9-2020
587
Date: 4-5-2020
633
Date: 2-11-2019
755
|
Given the sum-of-factorials function
is the smallest integer for prime such that is divisible by . If for all , then never divides any sum for all . Therefore, the values do not exist for 2, 5, 7, 13, 19, 31, ... (OEIS A056985).
The function is defined for , 11, 17, 23, 29, 37, 41, 43, 53, 67, 73, 79, 97, ... (OEIS A056983), with corresponding values 2, 4, 5, 12, 19, 24, 32, 19, 20, 20, 20, 7, 57, 6, ... (OEIS A056985).
REFERENCES:
Ashbacher, C. "Some Properties of the Smarandache-Kurepa and Smarandache-Wagstaff Functions." Math. Informatics Quart. 7, 114-116, 1997.
"Functions in Number Theory." https://www.gallup.unm.edu/~smarandache/FUNCT1.TXT.
Mudge, M. "Introducing the Smarandache-Kurepa and Smarandache-Wagstaff Functions." Smarandache Notions J. 7, 52-53, 1996.
Mudge, M. "Introducing the Smarandache-Kurepa and Smarandache-Wagstaff Functions." Abstracts of Papers Presented to the Amer. Math. Soc. 17, 583, 1996.
Sloane, N. J. A. Sequences A056983, A056984, and A056985 in "The On-Line Encyclopedia of Integer Sequences."
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|