المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تربية الماشية في روسيا الفيدرالية
2024-11-06
تربية ماشية اللبن في البلاد الأفريقية
2024-11-06
تربية الماشية في جمهورية مصر العربية
2024-11-06
The structure of the tone-unit
2024-11-06
IIntonation The tone-unit
2024-11-06
Tones on other words
2024-11-06

تحضير الايترات. اصطاع ويلليمسون
20-2-2017
Macrosomia
25-12-2018
التواتر السطحي Surface tension
20-6-2017
أخطاء في ظل ميثاق الشرف الإذاعي والاستراتيجية الإعلامية القائمة
18-6-2019
Our Sun
2-3-2016
الإرساب البحري
13/9/2022

Smarandache-Wagstaff Function  
  
614   03:31 مساءً   date: 30-11-2020
Author : Ashbacher, C
Book or Source : "Some Properties of the Smarandache-Kurepa and Smarandache-Wagstaff Functions." Math. Informatics Quart. 7
Page and Part : ...


Read More
Date: 23-10-2019 1706
Date: 5-2-2020 564
Date: 20-12-2020 854

Smarandache-Wagstaff Function

Given the sum-of-factorials function

 Sigma(n)=sum_(k=1)^nk!,

SW(p) is the smallest integer for p prime such that Sigma[SW(p)] is divisible by p. If pSigma(n) for all n<p, then p never divides any sum for all n. Therefore, the values SW(p) do not exist for 2, 5, 7, 13, 19, 31, ... (OEIS A056985).

The function is defined for p=3, 11, 17, 23, 29, 37, 41, 43, 53, 67, 73, 79, 97, ... (OEIS A056983), with corresponding values 2, 4, 5, 12, 19, 24, 32, 19, 20, 20, 20, 7, 57, 6, ... (OEIS A056985).


REFERENCES:

Ashbacher, C. "Some Properties of the Smarandache-Kurepa and Smarandache-Wagstaff Functions." Math. Informatics Quart. 7, 114-116, 1997.

"Functions in Number Theory." https://www.gallup.unm.edu/~smarandache/FUNCT1.TXT.

Mudge, M. "Introducing the Smarandache-Kurepa and Smarandache-Wagstaff Functions." Smarandache Notions J. 7, 52-53, 1996.

Mudge, M. "Introducing the Smarandache-Kurepa and Smarandache-Wagstaff Functions." Abstracts of Papers Presented to the Amer. Math. Soc. 17, 583, 1996.

Sloane, N. J. A. Sequences A056983, A056984, and A056985 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.