المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
المرتفعات الجوية والجبهات الهوائية
2025-04-13
التوزيع الجغرافي للمنخفضات الجوية على الكرة الأرضية
2025-04-13
أسباب نشوء المرتفعات الحديثة
2025-04-13
تعريف المنخفض الجوي
2025-04-13
الكبريت Sulfur
2025-04-13
الأفكار الحديثة حول المنخفض الجبهوي
2025-04-13

التفهيم
2024-08-17
الإثارة الأولية elementary excitation
15-1-2019
إرشاد الطفل
20-4-2016
النظام التقليدي لصياغة المقال في المجلة
2023-06-22
التسوية الفنية للضريبة
30-10-2016
حقوق الرحم
31-3-2016

Chebyshev,s Theorem  
  
1086   08:55 صباحاً   date: 1-10-2020
Author : Derbyshire, J
Book or Source : Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, 2004.
Page and Part : ...


Read More
Date: 23-11-2019 775
Date: 10-4-2020 1242
Date: 13-11-2019 1204

Chebyshev's Theorem

There are at least two theorems known as Chebyshev's theorem.

The first is Bertrand's postulate, proposed by Bertrand in 1845 and proved by Chebyshev using elementary methods in 1850 (Derbyshire 2004, p. 124).

The second is a weak form of the prime number theorem stating that the order of magnitude of the prime counting function pi(x) is

 pi(x)=x/(lnx),

where = denotes "is asymptotic to" (Hardy and Wright 1979, p. 9). More precisely, Chebyshev showed in 1849 that if

 pi(x)=(Cx)/(lnx)

for some constant C, then C=1 (Derbyshire 2004, p. 123).


REFERENCES:

Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, 2004.

Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.