المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

التـحليـل الأسـاسـي فـي الأسـواق الماليـة (fundamental analysis)
1/12/2022
Courant-Friedrichs-Lewy Condition
23-12-2018
السقا
21-8-2017
ALWAYS IN MOTION
18-9-2020
الشيخ الانصاري وتاجر من تجار بغداد
22-12-2021
[عبادة الامير]
23-10-2015

Chebyshev,s Theorem  
  
729   08:55 صباحاً   date: 1-10-2020
Author : Derbyshire, J
Book or Source : Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, 2004.
Page and Part : ...


Read More
Date: 20-8-2020 561
Date: 11-3-2020 533
Date: 5-12-2020 859

Chebyshev's Theorem

There are at least two theorems known as Chebyshev's theorem.

The first is Bertrand's postulate, proposed by Bertrand in 1845 and proved by Chebyshev using elementary methods in 1850 (Derbyshire 2004, p. 124).

The second is a weak form of the prime number theorem stating that the order of magnitude of the prime counting function pi(x) is

 pi(x)=x/(lnx),

where = denotes "is asymptotic to" (Hardy and Wright 1979, p. 9). More precisely, Chebyshev showed in 1849 that if

 pi(x)=(Cx)/(lnx)

for some constant C, then C=1 (Derbyshire 2004, p. 123).


REFERENCES:

Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, 2004.

Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.