المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
زكاة الفطرة
2024-11-05
زكاة الغنم
2024-11-05
زكاة الغلات
2024-11-05
تربية أنواع ماشية اللحم
2024-11-05
زكاة الذهب والفضة
2024-11-05
ماشية اللحم في الولايات المتحدة الأمريكية
2024-11-05


Twin Primes  
  
1658   05:12 مساءً   date: 9-9-2020
Author : ombieri, E.; Friedlander, J. B.; and Iwaniec, H
Book or Source : Primes in Arithmetic Progression to Large Moduli." Acta Math. 156
Page and Part : ...


Read More
Date: 19-2-2020 1109
Date: 21-1-2021 792
Date: 7-11-2020 1456

Twin Primes

Twin primes are pairs of primes of the form (pp+2). The term "twin prime" was coined by Paul Stäckel (1862-1919; Tietze 1965, p. 19). The first few twin primes are n+/-1 for n=4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 138, 150, 180, 192, 198, 228, 240, 270, 282, ... (OEIS A014574). Explicitly, these are (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), ... (OEIS A001359 and A006512).

All twin primes except (3, 5) are of the form 6n+/-1.

It is conjectured that there are an infinite number of twin primes (this is one form of the twin prime conjecture), but proving this remains one of the most elusive open problems in number theory. An important result for twin primes is Brun's theorem, which states that the number obtained by adding the reciprocals of the odd twin primes,

 B=(1/3+1/5)+(1/5+1/7)+(1/(11)+1/(13))+(1/(17)+1/(19))+...,

(1)

converges to a definite number ("Brun's constant"), which expresses the scarcity of twin primes, even if there are infinitely many of them (Ribenboim 1996, p. 201). By contrast, the series of all prime reciprocals diverges to infinity, as follows from the Mertens second theorem by letting x->infty.

The following table gives the first few p for the twin primes (pp+2), cousin primes (pp+4), sexy primes (pp+6), etc.

pair OEIS first member
(pp+2) A001359 3, 5, 11, 17, 29, 41, 59, 71, ...
(pp+4) A023200 3, 7, 13, 19, 37, 43, 67, 79, ...
(pp+6) A023201 5, 7, 11, 13, 17, 23, 31, 37, ...
(pp+8) A023202 3, 5, 11, 23, 29, 53, 59, 71, ...
(pp+10) A023203 3, 7, 13, 19, 31, 37, 43, 61, ...
(pp+12) A046133 5, 7, 11, 17, 19, 29, 31, 41, ...

Let pi_2(n) be the number of twin primes p and p+2 such that p<=n. It is not known if there are an infinite number of such primes (Wells 1986, p. 41; Shanks 1993), but it seems almost certain to be true (Hardy and Wright 1979, p. 5).

J. R. Chen has shown there exists an infinite number of primes p such that p+2 has at most two factors (Le Lionnais 1979, p. 49). Brun proved that there exists a computable integer x_0 such that if x>=x_0, then

 pi_2(x)<(100x)/((lnx)^2)

(2)

(Ribenboim 1996, p. 261). It has been shown that

 pi_2(x)<=cproduct_(p>2)[1-1/((p-1)^2)]x/((lnx)^2)[1+O((lnlnx)/(lnx))],

(3)

written more concisely as

 pi_2(x)<=cPi_2x/((lnx)^2)[1+O((lnlnx)/(lnx))],

(4)

where Pi_2 is known as the twin primes constant and c is another constant. The constant c has been reduced to 68/9 approx 7.5556 (Fouvry and Iwaniec 1983), 128/17 approx 7.5294 (Fouvry 1984), 7 (Bombieri et al. 1986), 6.9075 (Fouvry and Grupp 1986), 6.8354 (Wu 1990), and 6.8325 (Haugland 1999). The latter calculation involved evaluation of 7-fold integrals and fitting of three different parameters.

Hardy and Littlewood (1923) conjectured that c=2 (Ribenboim 1996, p. 262), and that pi_2(x) is asymptotically equal to

 pi_2(x)∼2Pi_2int_2^x(dx)/((lnx)^2).

(5)

This result is sometimes called the strong twin prime conjecture and is a special case of the k-tuple conjecture. A necessary (but not sufficient) condition for the twin prime conjecture to hold is that the prime gaps constant, defined by

 Delta=limsup_(n->infty)(p_(n+1)-p_n)/(p_n),

(6)

where p_n is the nth prime and d_n=p_(n+1)-p_n is the prime difference function, satisfies Delta=0.

Wolf notes that the formula

 pi_2(x)∼2Pi_2([pi(x)]^2)/x,

(7)

(which has asymptotic growth ∼Pi_2x/(lnx)^2) agrees with numerical data much better than does Pi_2x/(lnx)^2, although not as well as Pi_2Li_2(x).

Extending the search done by Brent in 1974 or 1975, Wolf has searched for the analog of the Skewes number for twins, i.e., an x such that pi_2(x)-Pi_2Li_2(x) changes sign. Wolf checked numbers up to 2^(42) and found more than 90000 sign changes. From this data, Wolf conjectured that the number of sign changes nu(n) for x<n of pi_2(x)-Pi_2Li_2(x) is given by

 nu(n)∼(sqrt(n))/(lnn).

(8)

Proof of this conjecture would also imply the existence an infinite number of twin primes.

The largest known twin primes as of Sep. 2016 correspond to

 2996863034895·2^(1290000)+/-1,

(9)

each having 388342 decimal digits and found by PrimeGrid on Dec. 25, 2011 (https://primes.utm.edu/top20/page.php?id=1#records).

In 1995, Nicely discovered a flaw in the Intel® PentiumTM microprocessor by computing the reciprocals of 824633702441 and 824633702443, which should have been accurate to 19 decimal places but were incorrect from the tenth decimal place on (Cipra 1995, 1996; Nicely 1996).

If n>=2, the integers n and n+2 form a pair of twin primes iff

 4[(n-1)!+1]+n=0 (mod n(n+2)).

(10)

 where  is a pair of twin primes iff

 phi(n)sigma(n)=(n-3)(n+1)

(11)

(Ribenboim 1996, p. 259). S. M. Ruiz has found the unexpected result that (n,n+2) are twin primes iff

 sum_(i=1)^ni^a(|_(n+2)/i_|+|_n/i_|)=2+n^a+sum_(i=1)^ni^a(|_(n+1)/i_|+|_(n-1)/i_|)

(12)

for a>=0, where |_x_| is the floor function.

The values of pi_2(n) were found by Brent (1976) up to n=10^(11). T. Nicely calculated them up to 10^(14) in his calculation of Brun's constant. Fry et al. (2001) and Sebah (2002) independently obtained pi_2(10^(16)) using distributed computation. The following table gives known values of pi_2(10^n) (OEIS A007508; Ribenboim 1996, p. 263; Nicely 1999; Sebah 2002).

n pi_2(n)
10^3 35
10^4 205
10^5 1224
10^6 8169
10^7 58980
10^8 440312
10^9 3424506
10^(10) 27412679
10^(11) 224376048
10^(12) 1870585220
10^(13) 15834664872
10^(14) 135780321665
10^(15) 1177209242304
10^(16) 10304195697298

It is conjectured that every even number is a sum of a pair of twin primes except a finite number of exceptions whose first few terms are 2, 4, 94, 96, 98, 400, 402, 404, 514, 516, 518, ... (OEIS A007534; Wells 1986, p. 132).


REFERENCES:

Bombieri, E.; Friedlander, J. B.; and Iwaniec, H. "Primes in Arithmetic Progression to Large Moduli." Acta Math. 156, 203-251, 1986.

Bradley, C. J. "The Location of Twin Primes." Math. Gaz. 67, 292-294, 1983.

Brent, R. P. "Irregularities in the Distribution of Primes and Twin Primes." Math. Comput. 29, 43-56, 1975.

Brent, R. P. "UMT 4." Math. Comput. 29, 221, 1975.

Brent, R. P. "Tables Concerning Irregularities in the Distribution of Primes and Twin Primes to 10^(11)." Math. Comput. 30, 379, 1976.

Caldwell, C. https://primes.utm.edu/top20/page.php?id=1.

Caldwell, C. K. "The Top Twenty: Twin Primes." https://www.utm.edu/research/primes/lists/top20/twin.html.

Cipra, B. "How Number Theory Got the Best of the Pentium Chip." Science 267, 175, 1995.

Cipra, B. "Divide and Conquer." What's Happening in the Mathematical Sciences, 1995-1996, Vol. 3. Providence, RI: Amer. Math. Soc., pp. 38-47, 1996.

Fouvry, É. "Autour du théorème de Bombieri-Vinogradov." Acta Math. 152, 219-244, 1984.

Fouvry, É. and Grupp, F. "On the Switching Principle in Sieve Theory." J. reine angew. Math. 370, 101-126, 1986.

Fouvry, É. and Iwaniec, H. "Primes in Arithmetic Progressions." Acta Arith. 42, 197-218, 1983.

Fry, P.; Nesheiwat, J.; and Szymanski, B. K. "Experiences with Distributed Computation of Twin Primes Distribution." In Progress in Computer Research, Vol. 2. (Ed. F. Columbus). Commack, NY: Nova Science Pub., pp. 187-203, 2001.

Gardner, M. "Patterns in Primes are a Clue to the Strong Law of Small Numbers." Sci. Amer. 243, 18-28, Dec. 1980.

Gourdon, X. and Sebah, P. "Introduction to Twin Primes and Brun's Constant Computation." https://numbers.computation.free.fr/Constants/Primes/twin.html.

Guy, R. K. "Gaps between Primes. Twin Primes." §A8 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 19-23, 1994.

Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.

Haugland, J. K. Application of Sieve Methods to Prime Numbers. Ph.D. thesis. Oxford, England: Oxford University, 1999.

Indlekofer, K. H. and Járai, A. "Largest Known Twin Primes." Math. Comput. 65, 427-428, 1996.

Indlekofer, K. H. and Járai, A. "Largest Known Twin Primes and Sophie Germain Primes." Math. Comput. 68, 1317-1324, 1999.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 46, 1979.

Nicely, T. R. "The Pentium Bug." https://www.trnicely.net/pentbug/pentbug.html.

Nicely, T. R. "Enumeration to 10^(14) of the Twin Primes and Brun's Constant." Virginia J. Sci. 46, 195-204, 1996. https://www.trnicely.net/twins/twins.html.

Nicely, T. R. "New Maximal Prime Gaps and First Occurrences." Math. Comput. 68, 1311-1315, 1999.

Nyman, B. and Nicely, T. R. "New Prime Gaps Between 10^(15) and 5×10^(16)." J. Int. Seq. 6, 1-6, 2003.

Parady, B. K.; Smith, J. F.; and Zarantonello, S. E. "Largest Known Twin Primes." Math. Comput. 55, 381-382, 1990.

Ribenboim, P. "Twin Primes." §4.3 in The New Book of Prime Number Records. New York: Springer-Verlag, pp. 259-265, 1996.

Sebah, P. "Counting Twin Primes and Brun's Constant New Computation" 22 Aug 2002. https://listserv.nodak.edu/scripts/wa.exe?A2=ind0208&L=nmbrthry&P=1968.

Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, p. 30, 1993.

Sloane, N. J. A. Sequences A001359/M2476, A006512/M3763, A007508/M1855, A007534, and A014574 in "The On-Line Encyclopedia of Integer Sequences."

Tietze, H. "Prime Numbers and Prime Twins." Ch. 1 in Famous Problems of Mathematics: Solved and Unsolved Mathematics Problems from Antiquity to Modern Times. New York: Graylock Press, pp. 1-20, 1965.

Weintraub, S. "A Prime Gap of 864." J. Recr. Math. 25, 42-43, 1993.

Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 41, 1986.

Wolf, M. "On Twin and Cousin Primes." https://www.ift.uni.wroc.pl/~mwolf/.

Wolf, M. "Some Conjectures on the Gaps Between Consecutive Primes." https://www.ift.uni.wroc.pl/~mwolf/.

Wu, J. "Sur la suite des nombres premiers jumeaux." Acta. Arith. 55, 365-394, 1990.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.