المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

انتقاء الوقود النووي
18-10-2016
دهون خلاتية Acetin Fats
2-4-2017
دور الاسواق المالية في النشاط الاقتصادي
13-2-2018
What kinds of direct-to-consumer genetic tests are available
28-10-2020
اسْتِصْغَارِ الذَّنْبِ – بحث روائي‏
28-9-2016
Apolipoproteins
16-1-2016

Elliptic Logarithm  
  
659   05:21 مساءً   date: 8-7-2020
Author : Wolfram, S.
Book or Source : The Mathematica Book, 5th ed. Champaign, IL: Wolfram Media
Page and Part : p. 788


Read More
Date: 6-10-2020 2009
Date: 11-1-2021 748
Date: 26-1-2021 1813

Elliptic Logarithm

EllipticLogEllipticLogReImEllipticLogContours

The elliptic logarithm is generalization of integrals of the form

 int_infty^x(dt)/(sqrt(t^2+at)),

for a real, which can be expressed in terms of logarithmic and inverse trigonometric functions, to

 eln_(a,b)(z)=1/2int_infty^z(dt)/(sqrt(t^3+at^2+bt))

for a and b real. This integral can be done analytically, but has a complicated form involving incomplete elliptic integrals of the first kind with complex parameters. The plots above show the special case a=b=1.

The elliptic logarithm is implemented in the Wolfram Language as EllipticLog[{xy}{ab}], where y is an unfortunate and superfluous parameter that must be set to either y=sqrt(x^3+ax^2+bx) or y=-sqrt(x^3+ax^2+bx) and which multiplies the above integral by a factor of sqrt(y^2)/y.

The inverse of the elliptic logarithm is the elliptic exponential function.


REFERENCES:

Wolfram, S. The Mathematica Book, 5th ed. Champaign, IL: Wolfram Media, p. 788, 2003.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.