تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Fermat,s Factorization Method
المؤلف:
Lehmer, D. H. and Powers, R. E.
المصدر:
"On Factoring Large Numbers." Bull. Amer. Math. Soc. 37
الجزء والصفحة:
...
13-9-2020
953
Fermat's Factorization Method
Given a number , Fermat's factorization methods look for integers
and
such that
. Then
![]() |
(1) |
and is factored. A modified form of this observation leads to Dixon's factorization method and the quadratic sieve.
Every positive odd integer can be represented in the form by writing
(with
) and noting that this gives
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
Adding and subtracting,
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
so solving for and
gives
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
Therefore,
![]() |
(8) |
As the first trial for , try
, where
is the ceiling function. Then check if
![]() |
(9) |
is a square number. There are only 22 combinations of the last two digits which a square number can assume, so most combinations can be eliminated. If is not a square number, then try
![]() |
(10) |
so
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
Continue with
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
so subsequent differences are obtained simply by adding two.
Maurice Kraitchik sped up the algorithm by looking for and
satisfying
![]() |
(20) |
i.e., . This congruence has uninteresting solutions
and interesting solutions
. It turns out that if
is odd and divisible by at least two different primes, then at least half of the solutions to
with
relatively prime to
are interesting. For such solutions,
is neither
nor 1 and is therefore a nontrivial factor of
(Pomerance 1996). This algorithm can be used to prove primality, but is not practical. In 1931, Lehmer and Powers discovered how to search for such pairs using continued fractions. This method was improved by Morrison and Brillhart (1975) into the continued fraction factorization algorithm, which was the fastest algorithm in use before the quadratic sieve factorization method was developed.
REFERENCES:
Lehmer, D. H. and Powers, R. E. "On Factoring Large Numbers." Bull. Amer. Math. Soc. 37, 770-776, 1931.
McKee, J. "Speeding Fermat's Factoring Method." Math. Comput. 68, 1729-1738, 1999.
Morrison, M. A. and Brillhart, J. "A Method of Factoring and the Factorization of ." Math. Comput. 29, 183-205, 1975.
Pomerance, C. "A Tale of Two Sieves." Not. Amer. Math. Soc. 43, 1473-1485, 1996.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
