A homework problem proposed in Steffi's math class in January 2003 asked students to prove that no ratio of two unequal numbers obtained by permuting all the digits 1, 2, ..., 7 results in an integer. If such a ratio existed, then some permutation of 1234567 would have to be divisible by . can immediately be restricted to , since a ratio of two permutations of the first seven digits must be less than , and the permutations were stated to be unequal, so . The case can be eliminated by the divisibility test for 3, which says that a number is divisible by 3 iff the sum of its digits is divisible by 3. Since the sum of the digits 1 to 7 is 28, which is not divisible by 3, there is no permutation of these digits that is divisible by 3. This also eliminates as a possibility, since a number must be divisible by 3 to be divisible by 6.
This leaves only the cases , 4, and 5 to consider. The case can be eliminated by noting that in order to be divisible by 5, the last digits of the numerator and denominator must be 5 and 1, respectively
(1) |
The largest possible ratio that can be obtained will then use the largest possible number in the numerator and the smallest possible in the denominator, namely
(2) |
But , so it is not possible to construct a fraction that is divisible by 5. Therefore, only and 4 need now be considered.
In general, consider the numbers of pairs of unequal permutations of all the digits in base () whose ratio is an integer. Then there is a unique solution
(3) |
a unique solution
(4) |
three solutions
(5) |
|||
(6) |
|||
(7) |
and so on.
The number of solutions for the first few bases and numbers of digits are summarized in the table below (OEIS A080202).
solutions for digits , , ..., | |
3 | 0 |
4 | 0, 1 |
5 | 0, 0, 1 |
6 | 0, 0, 3, 25 |
7 | 0, 0, 0, 2, 7 |
8 | 0, 0, 0, 0, 68, 623 |
9 | 0, 0, 0, 0, 0, 124, 1183 |
10 | 0, 0, 0, 0, 0, 0, 2338, 24603 |
11 | 0, 0, 0, 0, 0, 0, 3, 598, 5895 |
12 | 0, 0, 0, 0, 0, 0, 0, 0, 161947, 2017603 |
As can be seen from the table, in base 10, the only solutions are for the digits 12345678 and 123456789. Of the solutions for , there are two that produce three different integers for the same numerator:
(8) |
|||
(9) |
Taking the diagonal entries from this list for , 4, ... gives the sequence 0, 1, 1, 25, 7, 623, 1183, 24603, ... (OEIS A080203).
REFERENCES:
Sloane, N. J. A. Sequences A080202 and A080203 in "The On-Line Encyclopedia of Integer Sequences."
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
المجمع العلمي ينظّم ندوة حوارية حول مفهوم العولمة الرقمية في بابل
|
|
|