المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

Large Sample z Test
7-5-2017
الحوادث من الله وليس من الكواكب والنجوم
21-07-2015
العلاقة بين الدعاء والاجابة
2024-09-06
جواز الاستدلال بكل واحد من القراءات
4-1-2016
الأنانية
1-10-2021
قدرة تجميع collecting power
21-5-2018

Ellipsoid Packing  
  
613   04:53 مساءً   date: 8-2-2020
Author : Bezdek, A. and Kuperberg, W
Book or Source : In Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift (Ed. P. Gritzmann and B. Sturmfels). Providence, RI: Amer. Math. Soc
Page and Part : ...


Read More
Date: 18-12-2019 920
Date: 20-10-2020 1626
Date: 23-1-2021 595

Ellipsoid Packing

 

Bezdek and Kuperberg (1991) have constructed packings of identical ellipsoids of densities arbitrarily close to

 ((24sqrt(2)-6sqrt(3)-2pi)pi)/(72)=0.753355...

(OEIS A093824), greater than the maximum density of pi/(3sqrt(2)) approx 0.74048 (OEIS A093825) that is possible for sphere packing (Sloane 1998), as established by proof of the Kepler conjecture. Furthermore, J. Wills has modified the ellipsoid packing to yield an even higher density of 0.7585... (Bezdek and Kuperberg 1991).

Donev et al. (2004) showed that a maximally random jammed state of M&Ms chocolate candies has a packing density of about 68%, or 4% greater than spheres. Furthermore, Donev et al. (2004) also showed by computer simulations other ellipsoid packings resulted in random packing densities approaching that of the densest sphere packings, i.e., filling nearly 74% of space.


REFERENCES:

Bezdek, A. and Kuperberg, W. In Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift (Ed. P. Gritzmann and B. Sturmfels). Providence, RI: Amer. Math. Soc., pp. 71-80, 1991.

Donev, A.; Cisse, I.; Sachs, D.; Variano, E. A.; Stillinger, F. H.; Connelly, R.; Torquato, S.; and Chaikin, P. M. "Improving the Density of Jammed Disordered Packings using Ellipsoids." Science303, 990-993, 2004.

Sloane, N. J. A. "Kepler's Conjecture Confirmed." Nature 395, 435-436, 1998.

Sloane, N. J. A. Sequences A093824 and A093825 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.