Read More
Date: 26-8-2020
![]()
Date: 12-12-2020
![]()
Date: 10-4-2020
![]() |
A primitive root of a prime is an integer
such that
(mod
) has multiplicative order
(Ribenboim 1996, p. 22). More generally, if
(
and
are relatively prime) and
is of multiplicative order
modulo
where
is the totient function, then
is a primitive root of
(Burton 1989, p. 187). The first definition is a special case of the second since
for
a prime.
A primitive root of a number (but not necessarily the smallest primitive root for composite
) can be computed in the Wolfram Language using PrimitiveRoot[n].
If has a primitive root, then it has exactly
of them (Burton 1989, p. 188), which means that if
is a prime number, then there are exactly
incongruent primitive roots of
(Burton 1989). For
, 2, ..., the first few values of
are 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 4, 8, ... (OEIS A010554).
has a primitive root if it is of the form 2, 4,
, or
, where
is an odd prime and
(Burton 1989, p. 204). The first few
for which primitive roots exist are 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, 22, ... (OEIS A033948), so the number of primitive root of order
for
, 2, ... are 0, 1, 1, 1, 2, 1, 2, 0, 2, 2, 4, 0, 4, ... (OEIS A046144).
The smallest primitive roots for the first few primes are 1, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 6, 3, 5, 2, 2, 2, ... (OEIS A001918). Here is table of the primitive roots for the first few
for which a primitive root exists (OEIS A046147).
![]() |
![]() |
2 | 1 |
3 | 2 |
4 | 3 |
5 | 2, 3 |
6 | 5 |
7 | 3, 5 |
9 | 2, 5 |
10 | 3, 7 |
11 | 2, 6, 7, 8 |
13 | 2, 6, 7, 11 |
The largest primitive roots for , 2, ..., are 0, 1, 2, 3, 3, 5, 5, 0, 5, 7, 8, 0, 11, ... (OEIS A046146). The smallest primitive roots for the first few integers
are given in the following table (OEIS A046145), which omits
when
does not exist.
2 | 1 | 38 | 3 | 94 | 5 | 158 | 3 |
3 | 2 | 41 | 6 | 97 | 5 | 162 | 5 |
4 | 3 | 43 | 3 | 98 | 3 | 163 | 2 |
5 | 2 | 46 | 5 | 101 | 2 | 166 | 5 |
6 | 5 | 47 | 5 | 103 | 5 | 167 | 5 |
7 | 3 | 49 | 3 | 106 | 3 | 169 | 2 |
9 | 2 | 50 | 3 | 107 | 2 | 173 | 2 |
10 | 3 | 53 | 2 | 109 | 6 | 178 | 3 |
11 | 2 | 54 | 5 | 113 | 3 | 179 | 2 |
13 | 2 | 58 | 3 | 118 | 11 | 181 | 2 |
14 | 3 | 59 | 2 | 121 | 2 | 191 | 19 |
17 | 3 | 61 | 2 | 122 | 7 | 193 | 5 |
18 | 5 | 62 | 3 | 125 | 2 | 194 | 5 |
19 | 2 | 67 | 2 | 127 | 3 | 197 | 2 |
22 | 7 | 71 | 7 | 131 | 2 | 199 | 3 |
23 | 5 | 73 | 5 | 134 | 7 | 202 | 3 |
25 | 2 | 74 | 5 | 137 | 3 | 206 | 5 |
26 | 7 | 79 | 3 | 139 | 2 | 211 | 2 |
27 | 2 | 81 | 2 | 142 | 7 | 214 | 5 |
29 | 2 | 82 | 7 | 146 | 5 | 218 | 11 |
31 | 3 | 83 | 2 | 149 | 2 | 223 | 3 |
34 | 3 | 86 | 3 | 151 | 6 | 226 | 3 |
37 | 2 | 89 | 3 | 157 | 5 | 227 | 2 |
Let be any odd prime
, and let
![]() |
(1) |
Then
![]() |
(2) |
(Ribenboim 1996, pp. 22-23). For numbers with primitive roots, all
satisfying
are representable as
![]() |
(3) |
where , 1, ...,
,
is known as the index, and
is an integer. Kearnes (1984) showed that for any positive integer
, there exist infinitely many primes
such that
![]() |
(4) |
Call the least primitive root . Burgess (1962) proved that
![]() |
(5) |
for and
positive constants and
sufficiently large (Ribenboim 1996, p. 24).
Matthews (1976) obtained a formula for the "two-dimensional" Artin's constants for the set of primes for which and
are both primitive roots.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Primitive Roots." §24.3.4 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 827, 1972.
Burgess, D. A. "On Character Sums and -Series." Proc. London Math. Soc. 12, 193-206, 1962.
Burton, D. M. "The Order of an Integer Modulo ," "Primitive Roots for Primes," and "Composite Numbers Having Primitive Roots." §8.1-8.3 in Elementary Number Theory, 4th ed. Dubuque, IA: William C. Brown Publishers, pp. 184-205, 1989.
Guy, R. K. "Primitive Roots." §F9 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 248-249, 1994.
Jones, G. A. and Jones, J. M. "Primitive Roots." §6.2 in Elementary Number Theory. Berlin: Springer-Verlag, pp. 99-103, 1998.
Kearnes, K. "Solution of Problem 6420." Amer. Math. Monthly 91, 521, 1984.
Lehmer, D. H. "A Note on Primitive Roots." Scripta Math. 26, 117-119, 1961.
Matthews, K. R. "A Generalization of Artin's Conjecture for Primitive Roots." Acta Arith. 29, 113-146, 1976.
Nagell, T. "Moduli Having Primitive Roots." §32 in Introduction to Number Theory. New York: Wiley, pp. 107-111, 1951.
Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, pp. 22-25, 1996.
Riesel, H. Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, p. 97, 1994.
Sloane, N. J. A. Sequences A001918/M0242, A010554, and A033948 in "The On-Line Encyclopedia of Integer Sequences."
Western, A. E. and Miller, J. C. P. Tables of Indices and Primitive Roots. Cambridge, England: Cambridge University Press, pp. xxxvii-xlii, 1968.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
سماحة السيد الصافي يؤكد ضرورة تعريف المجتمعات بأهمية مبادئ أهل البيت (عليهم السلام) في إيجاد حلول للمشاكل الاجتماعية
|
|
|