المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24
من آداب التلاوة
2024-11-24
مواعيد زراعة الفجل
2024-11-24
أقسام الغنيمة
2024-11-24
سبب نزول قوله تعالى قل للذين كفروا ستغلبون وتحشرون الى جهنم
2024-11-24

امتناع الخلاء. (1)
1-07-2015
مظهر السائل النخاعي Apperarance
26-8-2020
جماعة سبحوا فغرق أحدهم
14-4-2016
نبات سنراريا
2023-04-28
حساسية للفلفل الأخضر Green Pepper Allergy
8-7-2018
قصة الخليقة
7-11-2017

Mapes, Method  
  
589   04:42 مساءً   date: 26-8-2020
Author : Mapes, D. C.
Book or Source : D. C. "Fast Method for Computing the Number of Primes Less than a Given Limit." Math. Comput. 17
Page and Part : ...


Read More
Date: 2-3-2020 776
Date: 22-9-2020 3227
Date: 8-11-2020 604

Mapes' Method

A method for computing the prime counting function. Define the function

 T_k(x,a)=(-1)^(beta_0+beta_1+...+beta_(a-1))|_x/(p_1^(beta_0)p_2^(beta_1)...p_a^(beta_(a-1)))_|,

(1)

where |_x_| is the floor function and the beta_i are the binary digits (0 or 1) in

 k=2^(a-1)beta_(a-1)+2^(a-2)beta_(a-2)+...+2^1beta_1+2^0beta_0.

(2)

Legendre's formula can then be written

 phi(x,a)=sum_(k=0)^(2^a-1)T_k(x,a).

(3)

The first few values of T_k(x,3) are

T_0(x,3) = |_x_|

(4)

T_1(x,3) = -|_x/(p_1)_|

(5)

T_2(x,3) = -|_x/(p_2)_|

(6)

T_3(x,3) = |_x/(p_1p_2)_|

(7)

T_4(x,3) = -|_x/(p_3)_|

(8)

T_5(x,3) = |_x/(p_1p_3)_|

(9)

T_6(x,3) = |_x/(p_2p_3)_|

(10)

T_7(x,3) = -|_x/(p_1p_2p_3)_|.

(11)

Mapes' method takes time ∼x^(0.7), which is slightly faster than the Lehmer-Schur method.


REFERENCES:

Mapes, D. C. "Fast Method for Computing the Number of Primes Less than a Given Limit." Math. Comput. 17, 179-185, 1963.

Riesel, H. "Mapes' Method." Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, p. 23, 1994.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.